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Reinforced Queries using Pre-trained Language Models in Sparse
Retrieval

Anonymous Author(s)∗

ABSTRACT
Despite the success of dense retrieval, sparse retrieval methods still
show potential in interpretability and generalizability. However,
query-document term mismatch in sparse retrieval persists, render-
ing it infeasible for many practical applications. To remedy this, we
introduce a novel query expansion approach, denoted as QSparse.
QSparse generates expanded terms by pre-trained language models
trained by reinforcement learning and then uses a sparse retrieval
method to retrieve documents. A thorough experimental evalua-
tion on three datasets from disparate domains (SCIFACT, Natural
Questions (NQ), and MS-MARCO passage) shows that QSparse
enriches the original query and significantly improves sparse re-
trieval. Furthermore, QSparse, when combined with dense retrieval,
achieves an 8% improvement in NDCG@10 for SCIFACT and a 2%
increase in recall for NQ, compared to the original dense retrieval.
These results highlight that QSparse leverages the benefits of both
sparse retrieval and dense retrieval to address mismatch issues. Our
solution and code are publicly available on GitHub1.

CCS CONCEPTS
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dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
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1 INTRODUCTION
The fundamental mechanism underlying sparse retrieval methods
involve matching the words in a given query with those in rele-
vant documents. This mechanism is prone to query-document term
mismatch, resulting in the omission of relevant documents [25].
Query expansion is a widely used technique to address mismatch
issues in sparse retrieval. Traditional query expansion approaches

1https://anonymous.4open.science/r/QSparse/.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

PLM RewardQuery New query

KL PPO

Active
model

New query

Base
model

+

Policy gradients optimize model

Query Reformulator

Evaluation

Reinforcement learning

1

2

3

Figure 1:High-level overviewofQSparse. PPO refers to theRL
optimization algorithm called Proximal Policy Optimization
(PPO) [33].

such as Pseudo Relevance Feedback (PRF) rely on retrieving pseudo-
relevant documents to expand queries [14, 15, 19, 22, 40]. Recent
advances in query expansion techniques tend to rely on the gener-
ative capabilities and inherent knowledge of pre-trained language
models (PLMs) [21, 40]. Among them, large languagemodels (LLMs)
like GPT from OpenAI [5] have demonstrated impressive abilities;
however, the expanded terms generated by PLMs may introduce
irrelevant information [25].

In this paper, we propose the use of PLMs fine-tuned by rein-
forcement learning (RL) to aid in query expansion. Specifically, we
use a PLM, GPT2 [29], fine-tuned using the Reinforcement Learn-
ing from Human Feedback (RLHF) paradigm [3, 23, 26, 34, 41]. RL
has been successfully applied to enhance PLMs in various tasks,
including question answering [6], conversational question answer-
ing [7, 10, 39], and conversational query reformulation [17]. We
argue that RL can reduce irrelevant information in query expansion
induced by PLMs, helping PLMs address matching issues in sparse
retrieval.

We name our approach as QSparse, and its three major steps are
shown in Figure 1: (1) During query expansion, a PLM generates
expanded terms, which are then concatenated with original queries
(see Section 3.1). (2) At the reward stage, new queries are evaluated
with a reward function to yield a scalar value. We use evaluation
metrics, e.g., NDCG@10, as the reward function (see Section 3.2).
(3) During RL optimization, there is an active model and a base
model (see Section 3.3). The active model is the policy to be op-
timized, while the base model is a PLM. A Kullback-Leibler (KL)
constant between the outputs of the active model and the based
model ensures that the generated terms do not deviate far from the
based model [41].

Experimental results on three widely-used datasets, SCIFACT,
NQ, and MS-MARCO, demonstrate that QSparse alleviates mis-
match issues in sparse retrieval and outperforms the traditional

1
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query expansion methods. Compared with LLM-based methods
like query2doc (GPT3) and Q2D (Flan-T5), QSparse (GPT2) shows
competitive results on SCIFACT and NQ. Moreover, we study the
impact of using RL for fine-tuning PLMs in Section 4.5.1. The re-
sults show that RL substantially enhances the performance of PLMs
compared to models solely fine-tuned through supervised learning
across all three datasets. Thus, we believe that RL in QSparse can
be seen as a subsequent fine-tuning process, further enhancing
the performance of the PLM and contributing to improved query
expansion results.

Our contributions are: (1)We propose QSparse, a novel query
expansion method, to mitigate mismatch problems. Experimental
results demonstrate that QSparse significantly enhances sparse re-
trieval performance on the SCIFACT and NQ datasets. A modest
improvement was also observed on the MS-MARCO passage. (2)
When compared with PLMs that have undergone supervised fine-
tuning (without RL), QSparse enhances the evaluation score by
approximately 1% across all three datasets. These results suggest
that incorporating the RL mechanism within QSparse can poten-
tially improve the performance of PLMs.

2 RELATEDWORK
Query expansion mitigates mismatch problems in sparse retrieval
by expanding new terms to the original query. Traditional query
expansion methods focus on using lexical knowledge [4, 28, 37],
or Pseudo-Relevance Feedback (PRF) such as RM3 [2]. PRF-based
models assume the top retrieval documents are relevant to the
query. This mechanism causes PRF-based models may fail if the
initial set of retrieved documents is not highly relevant.

Recently, PLMs have been applied to query expansion, benefiting
from their generated abilities and inherent knowledge [8, 21, 32,
40, 40]. For example, LLMs like GPT3, Flan-T5 and Flan-UL2 have
been used in query2doc for query expansion [9, 38]. However, PLMs
occasionally fail to manage the relevance and usefulness of their
inherent information. Previous work uses RL to fine-tune PLMs
on question-answering or conversation tasks[6, 7, 10, 39]. In this
paper, we explore the potential of using PLM and RL for query ex-
pansion to address the mismatch between queries and documents
in sparse retrieval methods. Also, we use Proximal Policy Optimiza-
tion (PPO) [33] as our RL optimization algorithm, distinguishing it
from previous studies [6, 7, 10, 39].

3 METHOD
3.1 PLM as Query Term Generator
We begin with the original query 𝑄 as [𝑞1, 𝑞2, · · · , 𝑞𝑛], where 𝑞𝑖
is the 𝑖-th term in the query. Let 𝑇 = [𝑡1, 𝑡2, ..., 𝑡𝑚] be the list of
query terms generated by a PLM. Then we create an expanded
query by infixing a special separator token <SEP> as follows: �̂� =

[𝑞1, 𝑞2, ..., 𝑞𝑛, <SEP>, 𝑡1, 𝑡2, ..., 𝑡𝑚].
The probability of the generated token, 𝑝 (𝑡𝑖 ), at time step 𝑖 is

defined as follows:

𝑝 (𝑡𝑖 ) = PLM(�̂�𝑖−1), (1)

where �̂�𝑖−1 = [𝑞1, 𝑞2, ..., 𝑞𝑛, <SEP>, 𝑡1, · · · 𝑡𝑖−1].

Search 
Engine 𝑟 𝑄, $𝑄

Query 
Reformulator

𝑄: who got the first nobel prize in physics

"𝑄: who got the first nobel prize in physics <SEP> Wilhelm 
Conrad Röntgen

!𝑄

𝐸(𝑄)

𝐸( !𝑄)

Figure 2: Reward function in QSparse.

3.2 Reward Function
We train the PLM under the paradigm of reinforcement learning
human feedback (RLHF), except that we use evaluation metrics as
the reward [36]. In RLHF, a reward function assigns a scalar value
to pairs (query and response). This reward function can incorporate
an evaluation metric, human feedback, or a combination of them.
The underlying goal is to develop a function of receiving a text
sequence and producing a scalar reward that accurately reflects
human preferences [13]. We use the evaluation score of the infor-
mation retrieval system, such as NDCG@10, as the reward function.
Specifically, given the original query 𝑄 and expanded query �̂� , we
define our reward function 𝑟 as:

𝑟 (𝑄, �̂�) = 𝐸 (�̂�) − 𝐸 (𝑄), (2)

where 𝑟 (𝑄, �̂�) ∈ R and 𝐸 (·) is the evaluation metric for the query.
Eq. 2 shows that the reward function assigns a positive reward
when the expanded query outperforms the original query. Figure 2
illustrates how the evaluation score is incorporated into our reward
function and QSparse.

3.3 Fine-tuning PLMs with RL
QSparse uses the Proximal PolicyOptimization (PPO) algorithm [33].
Given an original query 𝑄 from the dataset, 𝑇 is generated by the
current iteration of the fine-tuned policy, which is used to obtain
the expanded query �̂� , and a scalar score 𝑟 (𝑄, �̂�), as described in
Section 3.1. The modified reward 𝑅(𝑄, �̂�) sent to the RL update
rule is defined as follows [41]:

𝑅(𝑄, �̂�) = 𝑟 (𝑄, �̂�) − _ log
𝜋PPO (𝑇 |𝑄)
𝜋Base (𝑇 |𝑄)

, (3)

where _ ∈ R+ is a hyperparameter that can either be constant or
scheduled (i.e., decays with progressive steps). 𝜋PPO (𝑇 |𝑄) is the
policy to be optimized by PPO while 𝜋Base (𝑇 |𝑄) is the based model.
Note that the update rule is the parameter update from PPO that
maximizes the reward metrics in the current batch of data (PPO is
on-policy, which means the parameters are only updated with the
current batch of prompt-generation pairs). PPO uses constraints
on the gradient to ensure the update step does not destabilize the
learning process [13].

4 EXPERIMENTAL RESULTS
4.1 Datasets
We have conducted experiments on three datasets: SCIFACT [35],
NQ [12] and MS-MARCO passage retrieval [24], as depicted in
Table 1. SCIFACT is a standard information retrieval test collection
in Benchmarking-BEIR [35], which is a robust and heterogeneous

2
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evaluation benchmark for information retrieval. We use the dataset
format Beir2. NQ is an open-domain question answering dataset.
Open-domain question answering relies on passage retrieval to
select candidate contexts. We use the same dataset as in GAR [21].
MS-MARCO passage ranking task is a large-scale dataset focused
on machine reading comprehension [24]. In the supervised fine-
tuning process, we use the datasets released in the paper [38].

Table 1: Overview of the datasets used in our experiments.

Datasets Train Pairs Val queries Test queries

SCIFACT 735 174 300
NQ-answer 79,168 8,757 3,610
NQ-title 69,790 7,514 3,610
NQ-sentence 79,168 8,757 3,610
MS-MARCO 502,939 6,980 6,838

4.2 Baselines and Comparison models
We use BM25 [31] as the sparse retrieval method. We compare
QSparse with three strong baselines in each category of query
expansion techniques: (1) a traditional PRF method (i.e., RM3 [1]),
(2) LLM-based methods (i.e., Query2doc [38], Q2D [9]) and (3)
LSTMs with RL (i.e., LSTM-RL [30].) Note that we implement all
the models, except for the result of RM3 on NQ (from [21]) and on
MS-MARCO passage (from [38]). All results of Query2doc are from
[38]. We refer to Section 4.4 for implementation details.

The subscripts "I" and "II" used in Table 2 indicate the two
types of reward scores utilized in the RL fine-tuning process. Note
that the reward function uses one evaluation metric in each ex-
periment. For instance, on the SCIFACT dataset, QSparseI and
LSTM-RLI use NDCG@10 as the evaluation metric, while QSparseII
and LSTM-RLII use MAP.

4.3 Evaluation Metrics
We use several metrics to evaluate the effectiveness of QSparse. For
the SCIFACT dataset, we use the Normalised Discount Cumulative
Gain (NDCG@10), which is the official evaluation in the BEIR [35].
We also use the Mean Average Precision (MAP) since there is no
graded relevance judgment in the SCIFACT dataset. For the NQ
dataset, we use the same recall metrics R@20 and R@100 used in
[11]. For the MS-MARCO passage dataset, we employ the standard
Mean Reciprocal Rank (MRR@10) and R@50 measures as used in
[38].

4.4 Training Environment and
Hyperparameters

Implementation. We implement QSparse using Transformer Re-
inforcement Learning (TRL) techniques, as described by [36]. We
utilize the Pyterrier library implementation for BM25 and RM3 [20].
For Q2D, we use the released Flan-UL2 model used in the paper [9].
For LSTM-RL, we use the implementation provided in [27], with
modifications to the reward function. For the DPR, we train a bi-
encoder using the script released in BEIR [35]. The queries and
2https://github.com/beir-cellar/beir

documents are passed independently to the transformer network
to produce fixed-sized embeddings. Evaluation in the training pro-
cess is performed using the Pyterrier library [20], which allows
for convenient query-specific evaluation scores during training.
We conduct the training process on a single NVIDIA A-100 GPU
machine.

Training process. Two steps are included: (1) In supervised
fine-tuning, we fine-tune GPT2 based on a sequence-to-sequence
paradigm. In the fusion analysis introduced in Section 4.5.2, we
use the same fusion strategy as in [21]. Specifically, given a query,
suppose three distinct models have retrieved three ordered lists
of documents: [𝑎1, 𝑎2, ...], [𝑏1, 𝑏2, ...], and [𝑐1, 𝑐2, ...], respectively.
The fusion list for this query is constructed by interleaving the doc-
uments from each model: [𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2, ...]. The supervised
fine-tuning process involves 100 epochs, followed by selecting the
best validation model. (2) In the RL fine-tuning process, we em-
ployed the model obtained through supervised fine-tuning as our
initialized model. During training, we use RL to select expanded
terms in original queries with the highest reward score.

Hyperparameters. For the SCIFACT dataset, we use the follow-
ing hyperparameters during training: a batch size of 64, an input
length of 20, and a target length of 20. For the NQ dataset, the
input length is 20, and the target length is 40. In the reinforcement
learning process, we have adopted the same training parameters
used in [36].

4.5 Experimental Results
The experimental results are presented in Tables 2. (1) For SCIFACT
and NQ datasets, QSparse significantly enhances the performance
of BM25, as evidenced by improvements of 0.02 on NDCG@10 and
0.04 on MAP in SCIFACT, and 0.07 on R@20 and 0.04 on R@100 in
NQ. Moreover, QSparse outperforms LSTM-RL, showing the advan-
tage of RL combined with a PLM (instead of a small-scaled model
like LSTM). Furthermore, QSparse outperforms LLMs-based meth-
ods (i.e., Query2doc and Q2D), underscoring the usefulness of RL in
query expansion.(2) For MS-MARCO passage, our approach’s per-
formance is lower than that of Query2doc and Q2D. We speculate
that this discrepancy arises from MS-MARCO being a more general
topic dataset, which demands a greater amount of additional in-
formation stored in the model. Query2doc and Q2D employ LLMs
(Flan-UL2 and GPT3, respectively) with larger parameter sizes and
higher generation capabilities than GPT2 used in QSparse.

4.5.1 RL improvement. We analyze the improvements achieved
through RL fine-tuning in Table 2 (see bottom). Compared to QS-
parse/PLM, which is solely fine-tuned through a supervised process,
QSparse fine-tuned by RL (namely, QSparse-RLI and QSparse-RLII)
demonstrates greater efficacy across all three datasets. Therefore,
RL fine-tuning can be considered a subsequent tuning process fol-
lowing the supervised fine-tuning of PLMs.

4.5.2 Dense Retrieval improvement. The combination of sparse
retrieval and dense retrieval has shown usefulness in improving
model effectiveness [18]. In this paper, we use a simple fusion strat-
egy to combine Qparse with a classic dense retrieval method called
DPR [11] (See Section 4.4 for an explanation of the fusion strategy).

3
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Table 2: Evaluation results on sparse retrieval methods using query expansion techniques. Superscripts † denote statistically
significant (𝑝 < .05) improvements w.r.t BM25 in a standard 𝑡-test. For an explanation of the terminology used in the "Model"
column, please refer to Section 4.2.

Model Fine-tuning SCIFACT Neural Questions MS-MARCO passage

NDCG@10 MAP R@20 R@100 MRR@10 R@50

BM25 % 0.684 0.638 0.629 0.781 0.184 0.604
+RM3[1] % 0.645 0.590 0.642 0.796 0.158 0.567
+Query2doc[38] % 0.653 - - - 0.214 0.653
+Q2D[9] % 0.681 0.635 0.672 0.803 0.195 0.626
+LSTM-RLI[25] ! 0.673 0.637 0.620 0.756 0.168 0.547
+LSTM-RLII[25] ! 0.691 0.651 0.619 0.755 0.168 0.547

+QSparse/PLM ! 0.696 0.656 0.698† 0.821† 0.184 0.600
+QSparseI ! 0.704 0.671† 0.703† 0.824† 0.191 0.616
+QSparseII ! 0.701 0.664 0.712† 0.823† 0.191 0.615

Table 3: Evaluation results on dense retrieval methods. Su-
perscripts ‡ denote statistically significant (𝑝 < .05) improve-
ments w.r.t DPR in a standard 𝑡-test.

Model SCIFACT Neural Questions

NDCG@10 MAP R@20 R@100

DPR[11] 0.728 0.706 0.795 0.861
Fusion 0.786‡ 0.744‡ 0.816‡ 0.883‡

As shown in Table 3, we compare the performance of our fusion ap-
proach with that of DPR, on SCIFACT and NQ datasets. The results
show that the fusion strategy significantly improves DPR’s perfor-
mance. Thus, we argue that although dense retrieval has shown
excellent performance, the study of sparse retrieval is necessary
because combining both can yield better results. Moreover, sparse
retrieval holds significant advantages in terms of efficiency and
interpretability.

4.6 Mean Response Time Analysis
To compare the efficiency of the query expansion techniques used
in our experiments, we evaluate their mean response time on the
NQ dataset. Running time is measured by the Pyserini library [16].
To ensure a fair comparison, all encoding processes were conducted
with a single thread and a batch size of one (i.e., thread=1, batch-
size=1). Figure 3 shows that QSparse outperforms all other query
expansion techniques while maintaining a relatively high-efficiency
level. QSparse strikes a balance between effectiveness and efficiency,
making it well-suited for scenarios where there is a need for both
efficiency and effectiveness.

5 CONCLUSION
We introduce a query expansion method called QSparse to address
query-document term mismatch in sparse retrieval. Our experi-
mental results demonstrate that QSparse significantly improves
the performance of sparse retrieval. We argue that, in query ex-
pansion, RL fine-tuning can be considered a subsequent tuning

BM25

RM3

Q2D(Flan-UL2)

LSTM-RL

DPR

Fusion

QSparse/PLM
QSparse-I

QSparse-II

500 1000 10000

0.65

0.7

0.75

0.8

Mean Response Time (ms)

R
@

2
0

Dense Retrieval (DPR)

Figure 3: Mean response time evaluated on the NQ dataset.
This response time is calculated by summing the time taken
to generate terms and the subsequent search time.

process following the supervised fine-tuning of PLMs. This argu-
ment encourages further exploration and research in optimizing
PLMs through RL-based approaches. The fusion analysis reveals
that combining QSparse and dense retrieval leads to a considerable
performance boost compared to using dense retrieval alone. Our
findings indicate that while dense retrieval is generally more ef-
fective than sparse retrieval, there is still room for improvement
by combining the two techniques. This area shall be explored in
future work.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ReinforcedQueries using Pre-trained Language Models in Sparse Retrieval Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah Larkey,

Xiaoyan Li, Mark D Smucker, and Courtney Wade. 2004. UMass at TREC 2004:
Novelty and HARD. Computer Science Department Faculty Publication Series
(2004), 189.

[2] Giambattista Amati. 2003. Probability models for information retrieval based on
divergence from randomness. PhD. University of Glasgow. https://eleanor.lib.gla.
ac.uk/record=b2151999

[3] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova
DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. 2022.
Training a Helpful and Harmless Assistant with Reinforcement Learning from
Human Feedback. arXiv preprint arXiv:2204.05862 (2022).

[4] Jagdev Bhogal, Andrew MacFarlane, and Peter Smith. 2007. A review of ontology
based query expansion. Information processing & management 43, 4 (2007),
866–886.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[6] Christian Buck, Jannis Bulian, Massimiliano Ciaramita, Wojciech Gajewski,
Andrea Gesmundo, Neil Houlsby, and Wei Wang. 2017. Ask the right ques-
tions: Active question reformulation with reinforcement learning. arXiv preprint
arXiv:1705.07830 (2017).

[7] Zhiyu Chen, Jie Zhao, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, and Shervin
Malmasi. 2022. Reinforced question rewriting for conversational question an-
swering. arXiv preprint arXiv:2210.15777 (2022).

[8] Ayyoob Imani, Amir Vakili, Ali Montazer, and Azadeh Shakery. 2019. Deep
neural networks for query expansion using word embeddings. In Advances in
Information Retrieval: 41st European Conference on IR Research, ECIR 2019, Cologne,
Germany, April 14–18, 2019, Proceedings, Part II 41. Springer, 203–210.

[9] Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui Wang, and Michael Ben-
dersky. 2023. Query Expansion by Prompting Large Language Models. arXiv
preprint arXiv:2305.03653 (2023).

[10] Magdalena Kaiser, Rishiraj Saha Roy, and Gerhard Weikum. 2021. Reinforcement
learning from reformulations in conversational question answering over knowl-
edge graphs. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 459–469.

[11] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906 (2020).

[12] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton
Lee, et al. 2019. Natural questions: a benchmark for question answering research.
Transactions of the Association for Computational Linguistics 7 (2019), 453–466.

[13] Nathan Lambert. 2022. Illustrating Reinforcement Learning from Human Feedback
(RLHF). https://huggingface.co/blog/rlhf

[14] Victor Lavrenko and W Bruce Croft. 2017. Relevance-based language models. In
ACM SIGIR Forum, Vol. 51. ACM New York, NY, USA, 260–267.

[15] Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates, Le Sun, and
Jungang Xu. 2018. NPRF: A neural pseudo relevance feedback framework for
ad-hoc information retrieval. arXiv preprint arXiv:1810.12936 (2018).

[16] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Infor-
mation Retrieval Research with Sparse and Dense Representations. In Proceedings
of the 44th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2021). 2356–2362.

[17] Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo Nogueira, Ming-Feng Tsai, Chuan-
Ju Wang, and Jimmy Lin. 2020. Conversational question reformulation via
sequence-to-sequence architectures and pretrained language models. arXiv
preprint arXiv:2004.01909 (2020).

[18] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse,
dense, and attentional representations for text retrieval. Transactions of the
Association for Computational Linguistics 9 (2021), 329–345.

[19] Yuanhua Lv and ChengXiang Zhai. 2009. Adaptive relevance feedback in infor-
mation retrieval. In Proceedings of the 18th ACM conference on Information and
knowledge management. 255–264.

[20] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation
inInformation Retrieval using PyTerrier. In Proceedings of ICTIR 2020.

[21] Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei
Han, andWeizhu Chen. 2021. Generation-Augmented Retrieval for Open-Domain
Question Answering. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). 4089–4100.

[22] Donald Metzler and W Bruce Croft. 2007. Latent concept expansion using
markov random fields. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval. 311–318.

[23] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina
Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al.
2021. WebGPT: Browser-assisted question-answering with human feedback.
arXiv preprint arXiv:2112.09332 (2021).

[24] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading
comprehension dataset. choice 2640 (2016), 660.

[25] Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-Oriented Query Reformula-
tion with Reinforcement Learning. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational Lin-
guistics, Copenhagen, Denmark, 574–583. https://doi.org/10.18653/v1/D17-1061

[26] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155 (2022).

[27] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304 (2017).

[28] Yonggang Qiu and Hans-Peter Frei. 1993. Concept based query expansion. In
Proceedings of the 16th annual international ACM SIGIR conference on Research
and development in information retrieval. 160–169.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[30] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava
Goel. 2017. Self-critical sequence training for image captioning. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 7008–7024.

[31] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[32] Dwaipayan Roy, Debjyoti Paul, Mandar Mitra, and Utpal Garain. 2016. Using
word embeddings for automatic query expansion. arXiv preprint arXiv:1606.07608
(2016).

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[34] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to
summarize with human feedback. Advances in Neural Information Processing
Systems 33 (2020), 3008–3021.

[35] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A heterogenous benchmark for zero-shot evaluation of
information retrieval models. arXiv preprint arXiv:2104.08663 (2021).

[36] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan
Thrush, and Nathan Lambert. 2020. TRL: Transformer Reinforcement Learning.
https://github.com/lvwerra/trl.

[37] Ellen M Voorhees. 1994. Query expansion using lexical-semantic relations. In
SIGIR’94: Proceedings of the Seventeenth Annual International ACM-SIGIR Confer-
ence on Research and Development in Information Retrieval, organised by Dublin
City University. Springer, 61–69.

[38] Liang Wang, Nan Yang, and Furu Wei. 2023. Query2doc: Query Expansion with
Large Language Models. arXiv preprint arXiv:2303.07678 (2023).

[39] Zeqiu Wu, Yi Luan, Hannah Rashkin, David Reitter, Hannaneh Hajishirzi, Mari
Ostendorf, and Gaurav Singh Tomar. 2021. Conqrr: Conversational query rewrit-
ing for retrieval with reinforcement learning. arXiv preprint arXiv:2112.08558
(2021).

[40] Zhi Zheng, Kai Hui, Ben He, Xianpei Han, Le Sun, and Andrew Yates. 2020. BERT-
QE: contextualized query expansion for document re-ranking. arXiv preprint
arXiv:2009.07258 (2020).

[41] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario
Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-tuning language models
from human preferences. arXiv preprint arXiv:1909.08593 (2019).

5

https://eleanor.lib.gla.ac.uk/record=b2151999
https://eleanor.lib.gla.ac.uk/record=b2151999
https://huggingface.co/blog/rlhf
https://doi.org/10.18653/v1/D17-1061
https://github.com/lvwerra/trl

	Abstract
	1 Introduction
	2 related work
	3 Method
	3.1 PLM as Query Term Generator
	3.2 Reward Function
	3.3 Fine-tuning PLMs with RL

	4 EXPERIMENTAL RESULTS
	4.1 Datasets
	4.2 Baselines and Comparison models
	4.3 Evaluation Metrics
	4.4 Training Environment and Hyperparameters
	4.5 Experimental Results
	4.6 Mean Response Time Analysis

	5 Conclusion
	References

