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Abstract

Modern neural networks have shown success in language modeling tasks. Tensor networks (TNs) have

been used to unravel their theoretical properties, albeit without concrete empirical support: no TN-like

language model has proven effective on widely accepted natural language processing datasets. This

thesis fills this gap by presenting a class of tensor-train language models (TTLMs). TTLMs encode the

joint probability distribution of sequences into a wave function and operate on conditional probability

distributions during training and inference. Theoretically, we demonstrate that the architectures of

Second-order Recurrent Neural Networks (RNNs), Recurrent Arithmetic Circuits, and Multiplicative

Integration RNNs are essentially special cases of TTLMs. Experimental evaluations reveal that the

theoretical properties of TNs—linearity, multiplicativity, and complex-valued representations—cause

difficulties during training. We employ statistical methods, such as the Kolmogorov-Smirnov test, to

identify that the issues are unstable gradient flows, exponential decay in hidden states, and complex

number multiplications. To enhance the effectiveness of TTLMs, we propose a class of variants called

the Linear Multiplicative Models (LMMs). LMMs are linear, multiplicative, and complex-valued,

achieving competitive results on language modeling tasks compared to vanilla RNNs. Their success

provides empirical support for prior research that establishes the equivalence between TNs and neural

networks, and offers a novel perspective in the field dominated by nonlinear and additive language

models.
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1
Introduction

The interest around language modeling has surged in these years thanks to the large amount of data

available and the swift increase of computing performance (Min et al., 2021; Bommasani et al., 2021;

Han et al., 2021). It is the fundamental task and long-standing research topic in natural language

processing (NLP) (Rosenfeld, 2000; Bommasani et al., 2021; Wei et al., 2023). Language models

(LMs) find applications in many computational linguistic problems such as speech recognition (Kuhn

and De Mori, 1990; Jelinek, 1998), machine translation (Brown et al., 1993; Schwenk et al., 2006),

and semantic parsing (Deschacht et al., 2012; Andreas et al., 2013). More recently, the development of

large-scale LMs has permeated various domains such as healthcare (Wang et al., 2023; Yang, Zhao,

et al., 2023), finance (Wu et al., 2023; Yang, Liu, et al., 2023), and law (Cui et al., 2023). Language

modeling consists of developing algorithmic and engineering strategies for automatic text generation.

From a mathematical point of view, widely different models have been employed and further developed,

from n-gram LMs (Shannon, 1951; Bahl et al., 1983; Church, 1989), to neural networks (Bengio et al.,

2000; Mikolov et al., 2010; Vaswani et al., 2017; Brown et al., 2020; Thoppilan et al., 2022). Their

major role is to learn the probability distributions over a sequence of linguistic units (Rosenfeld, 2000;

Jurafsky, 2000; Wei et al., 2023).

Despite their success across a wide swath of NLP tasks, neural network LMs are often used as black

boxes (Belinkov and Glass, 2019; Creswell et al., 2022; Yin and Neubig, 2022). Prior research

uses tensor networks (TNs; Orús, 2014) to analyze the theoretical properties of neural network

models. A better understanding of feed-forward, convolutional and recurrent architectures has been

gained, including parameters compression (Novikov et al., 2015), expressive power (Cohen et al.,

2016; Khrulkov et al., 2018), and depth efficiency for long-term memory (Levine et al., 2018). TNs

have also garnered attention as a model architecture to capture linguistic information in sequences.

Theoretical proposals by Pestun et al. (2017) and Pestun and Vlassopoulos (2017) seek to leverage
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TNs to capture long-range correlations (Tanaka-Ishii, 2021) in human language that challenge the

ability of neural network LMs (e.g., LSTMs; Hochreiter and Schmidhuber, 1997). Neither of them

has an experimental evaluation of their models. Moving forward, several researchers have adopted

the simplest TN, specifically tensor trains (Oseledets, 2011), as their proposed architecture with

various motivations (Han et al., 2018; Stokes and Terilla, 2019; Novikov et al., 2021; Miller et al.,

2021). Instead of language modeling tasks, most of these models focus on solving density estimation

problem (Silverman, 1986), which is learning the empirical distribution (Tang et al., 2022) defined by

the training set.

In this thesis we introduce TTLMs, a class of language models using tensor trains (Oseledets, 2011)

as their architecture. Specifically, TTLMs encode the joint probability distribution of sequences into

a wave function. The measurement of the wave function is the inner product of two same-sized

high-dimensional tensors: the input data Φ(x) and global coefficients A. TTLMs use Tensor Train

decompositions (Oseledets, 2011) to approximate A in low-dimensional spaces to avoid curse-of-

dimensionality (Bellman, 1966). As an original contribution of this thesis, we present two propositions,

accompanied by their proofs, that demonstrate how TTLMs compute the joint probability of sequences

by its conditional probability distributions during training and inference. Unlike prior tensor network

LMs, the training paradigm of TTLMs aligns with neural network LMs, paving a critical step toward

using TNs to tackle real-world language modeling tasks.

We conduct a comprehensive evaluation of TTLMs, examining their connections to previous models

and theoretical properties. First, we clarify the relationship between TTLMs and a series of recurrent

neural networks (RNNs): Second-order RNNs (Goudreau et al., 1994), Recurrent Arithmetic Circuits

(RACs; Levine et al., 2018), and Multiplicative Integration RNNs (Wu et al., 2016). These connections

open a new eye to understanding RNNs and give some natural implementations for TTLMs. Second,

using RACs as an example, we show that the theoretical properties of TNs (i.e., linearity, multiplica-

tivity, and complex-valued representations) cause difficulties during training. Our statistical analysis

reveals that the contributing factors are unstable gradient flows, exponential decay in hidden states,

and the distribution of complex number multiplications.
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To further enhance the effectiveness of TTLMs, we devise a class of variants called the Linear

Multiplicative Models (LMMs). With H-dimensional hidden states, the total number of trainable

parameters in the recurrent layer is reduced from 2H2 in vanilla RNNs to 4H. More important, when

combined with a linear normalization layer, such as Min-Max normalization (Sahu, 2015), LMMs

show competitive effectiveness on language modeling tasks compared with vanilla RNNs. These

findings underscore the feasibility of TNs in the realm of language modeling.

The original contributions of the thesis can be summarized as follows:

• We present a historical review of tensor network LMs, clarify their research objectives, and

conclude their training paradigm. This work represents a pioneering effort to untangle and assess

this research domain.

• We propose a class of tensor-train language models (TTLMs). The theoretical relationship

between TTLMs and existing RNNs is clarified, and statistical methods evaluate the impact of

theoretical properties of TNs—linearity, multiplicativity, and complex-valued representations—

on model effectiveness.

• We propose a complex-valued class of TTLMs (i.e., LMMs) that can achieve competitive results

on language modeling tasks compared with vanilla RNNs. LMMs inherit the fundamental

properties of TNs and their success demonstrates the feasibility of TNs in language modeling

tasks, providing empirical support for prior research that establishes the connections between

TNs and neural networks.

The rest of the thesis is organized as follows: (1) Ch. 2 outlines the evolution of LMs, setting the general

background for discussing tensor network LMs. (2) Ch. 3 presents the notation, diagrams, and TNs to

cater to readers with different background knowledge. (3) Ch. 4 reviews the development of tensor

network LMs, including their research objectives, paradigm, limitations, and potential enhancements.

We also review recent advancements in RNNs, since they have similar objectives and mathematical

relationships with our models. (4) Ch. 5 presents our theoretical innovations: a class of tensor-trains
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LMs (i.e., TTLMs) and its variant (i.e., LMMs). (5) Ch. 6 introduces our experimental evaluation

of our proposed models, with a specific focus on their theoretical properties, including linearity,

multiplicativity, and complex numbers. (6) Discussion and future research directions are pointed out in

Ch. 7, before concluding in Ch. 8.
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2
Background: Evolution of Language

Modeling

This chapter outlines the evolution of language modeling to set a good foundation for discussing tensor

networks language models (LMs) in Ch. 4 and our proposed models in Ch. 5. The organization of this

chapter is as follows: We introduce the basic concepts and terminology of language modeling in Sec.

2.1. Moving on, we discuss traditional LMs, as exemplified by n-gram LMs in Sec. 2.2. Subsequently,

we introduce neural network LMs, as exemplified by Recurrent Neural Networks (RNNs) (Mikolov

et al., 2010) and state-of-the-art LMs in Sec. 2.3. Last, we present the evaluation metric for LMs in

Sec. 2.4.

By the end of this chapter, readers will grasp a basic understanding of language modeling. For those

readers who seek a comprehensive and updated overview of the field, we recommend the work of Wei

et al. (2023).

2.1 Basic Concepts and Terminology

We begin by introducing basic concepts that will be used throughout the thesis (see Table 3.1 for the

notation). We denote a sequence of L ∈ N+ discrete random variables as X = [X (1),X (2), · · · ,X (L)],

where each X (i) ∈V for all i ∈ [L]. The notation V refers to the vocabulary (i.e., the non-empty set of

types used to construct the training set). The term types refers to distinct words; in contrast, the term

tokens refers to all occurrences of words, including repeats. The vocabulary size refers to the number

of types, denoted as |V | ∈ N+. Each type is typically treated as a random variable in LMs, even if

some of them share the same stem (e.g., books and book) (Jurafsky, 2000).
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The probability distribution of X is denoted as P : V L →R[0,1]. Let x = [x(1),x(2), · · · ,x(L)] be a sample

according to X. We use P(x) to represent the probability mass function that takes the value x, which

is short for P
(

X (1) = x(1),X (2) = x(2), · · · ,X (L) = x(L)
)

. Language modeling studies the probability

distributions over a linguistic sequence, such as words, sentences, and whole documents (Rosenfeld,

2000; Jurafsky, 2000; Wei et al., 2023). To establish LMs, the initial and fundamental step is converting

the sequence x into numeric values that computers can process, allowing for the identification and

comprehension of linguistic patterns. This process is commonly known as text representation and can be

broadly classified into two groups: discrete representation and continuous representation (Cartuyvels

et al., 2021).

To ensure clarity, we define the two representations here. (1) The term discrete representation

refers to a variable that takes on a finite or countably infinite number of values to represent some

concept (Cartuyvels et al., 2021). In the context of language modeling, this term means that each

type in a dataset is represented as a discrete random variable. For example, the value of a variable

can be the frequency of the corresponding type or a binary number, depending on whether the type

appears or not. (2) The term continuous representation denotes a real-valued variable, taking on

values in the Euclidean space RD where D ∈ N+ is a specific dimension dependent on the model being

used (Cartuyvels et al., 2021). In language modeling, this term means that each type is represented by

a real-valued vector, commonly known as its word embedding.

The difference between the two representations reflects a scientific paradigm shift in language model-

ing. During this shift, LMs have undergone significant changes, including their structures, training

techniques, evaluation metrics, and applications (Wei et al., 2023). This shift can be easily discerned in

the timeline of LMs. The most well-known traditional LMs, n-gram LMs, represent text as discrete

variables; n-gram models were first applied for English word sequences by Shannon (1948) and

have been widely used in the 1990s (Bahl et al., 1983; Jelinek, 1990; Church, 1989). Soon the first

feed-forward neural network LMs was proposed by Bengio et al. (2000). Since then, the representa-

tion of text in LMs has undergone a significant shift; the widely cited work of Mikolov, Chen, et al.

(2013) signifies the era of representing text as real-valued vectors. From 2018 to the present day,
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pre-trained neural network LMs have quickly dominated the field, such as GPT-3 (Brown et al., 2020)

and LaMDA (Thoppilan et al., 2022).

In the subsequent two sections, we will introduce traditional LMs with discrete representations and

neural network LMs with continuous representations.

2.2 Discrete Representations

We introduce the most commonly used traditional LMs using discrete representations, namely n-gram

LMs, in Sec. 2.2.1. Then, we outline the limitations of traditional LMs in Sec. 2.2.2.

2.2.1 n-gram Language Models

The n-gram LMs follow the Markov assumption and use the chain rule of probabilities (Jurafsky,

2000). The Markov assumption states that the probability of a word depends only on a fixed number

of preceding words, rather than the entire history of the text (Markov, 2006). The chain rule of

probability (Bahl et al., 1983) decomposes the joint probability of words P(x) as:

P(x) = P(x(1))P(x(2)|x(1)) · · ·P(x(L)|x(1),x(2), · · · ,x(L−1)),

=
L

∏
t=1

P(x(t)|x(1:t−1)), (2.1)

where x(1:t−1) denotes the sequence [x(1),x(2), · · · ,x(t−1)]; and P(x(t)|x(1:t−1)) ∈ R[0,1] is shorthand for

P(X (t) = x(t)|X (1:t−1) = x(1:t−1)), which denots the conditional probability distribution of X (t) given

X (1:t−1) = x(1:t−1). We can compute the probability of a sequence by multiplying its conditional

probabilities in Eq. 2.1.

7



Figure 2.1 A visualization of the sampling distribution for sampling sentences by repeatedly sampling unigrams
(n = 1) (Jurafsky, 2000). The blue bar represents the frequency of each word in the training set. The number line
shows the cumulative probabilities. If we choose a random number between 0 and 1, it will fall in an interval
corresponding to some word. The expectation for a random number to fall in the larger intervals of frequent
words (e.g., the, of, a) is higher than in the smaller interval of rare words (e.g., polyphonic).

To compute the conditional probabilities, n-gram LMs consider the probability of a word given only its

n−1 preceding words, instead of all preceding words, making the following assumption:

P(x(t)|x(1:t−1)) = P(x(t)|x(t−n+1,t−1)). (2.2)

Then n-gram LMs compute the probability of a sequence by substituting Eq. 2.2 into Eq. 2.1 (Jurafsky,

2000):

P(x) =
L

∏
t=1

P(x(t)|x(t−n+1,t−1)), (2.3)

where P(x(t)|x(t−n+1:t−1)) is computed by the method of maximum likelihood estimation given a

training set and normalized as follows (Jurafsky, 2000):

P̃(x(t)|x(t−n+1:t−1)) =
Count(x(t−n+1:t))

Count(x(t−n+1:t−1))
, (2.4)

where P̃(·) denotes the probability probabilities defined by the model, distinguishing them from

the ground-truth probabilities P(·); Count(x(t−n+1:t)) is the number of n-grams (i.e., x(t−n+1:t)); and

Count(x(t−n+1:t−1)) is the number of (n-1)-grams (i.e., x(t−n+1:t−1)).

An n-gram LM contains a probability distribution defined by itself after computing Eq. 2.4 on the

training set. For example, Fig. 2.1 visualizes the probability distribution defined by unigram LMs

(n = 1). This technique of visualizing an LM by sampling was first suggested very early on by Shannon

(1951) and Miller and Selfridge (1950).
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2.2.2 Limitations of Traditional Language Models

The simplicity of n-gram LMs is shown in Eq. 2.4, where they tabulate the frequency of n-grams

in the training set. Despite the straightforwardness of this approach, which has proven to be a key

driver of the effectiveness of n-gram LMs (Brants et al., 2007), it has raised crucial issues that must be

addressed.

One fundamental issue is the sparsity problem in n-gram LMs, stemming from their way of modeling

the joint probability of sequences P(x). As the length of a sequence (i.e., L ∈ N+) increases, the

number of possible distinct sequences increases exponentially; this growth results in a large and

complex search space, V L, for LMs, leading to the curse of dimensionality (Bellman, 1966).

Despite n-gram LMs truncating a sequence into multiple n-grams, as the value of n increases, n-gram

LMs still require an exponential increase in the dataset size. For example, if the vocabulary size of a

dataset reaches 5000, there are |V |2 = 2.5×107 bigrams and |V |4 = 6.25×1014 4-grams. Thus, the

exponential growth of the search space V n leads to sparse n-grams; for example, an n-gram that appears

in the training set may not appear in the test set (Bengio et al., 2000). Consequently, n-gram LMs

assign the probability of that n-gram as zero at test time, when multiplied with the other probabilities

in Eq. 2.3, leading to the probability of the entire sequence being zero. Many techniques have been

proposed to alleviate the issue of sparsity. For example, smoothing intends to properly shave off a bit

of probability mass from some more frequent n-grams and give it to the n-grams that do not occur

during training (Kneser and Ney, 1995; Chen and Goodman, 1999; Moore and Quirk, 2009).

Rather than relying on the n-grams alone, more traditional LMs using discrete representation were

proposed, including models based on decision trees (Potamianos and Jelinek, 1998; Heeman, 1999)

and maximum entropy-based techniques (Rosenfeld, 1994; Peters and Klakow, 1999; Wang et al.,

2005). These LMs typically incorporated manually engineered linguistic features such as part-of-

speech tags. However, they could not essentially address the drawback associated with discrete

representations (Bengio et al., 2000). Specifically, when each discrete variable takes a large value,
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most observed objects are almost maximally far from each other in the Hamming distance. Any change

of these discrete variables may drastically impact the value of the function P(x) to be estimated.

2.3 Continuous Representations

Neural network LMs learn continous representation of text by representing words as real-valued

vectors (Hinton, 1984). The property is a defining feature that sets neural network LMs apart from

traditional LMs (Mikolov, Yih, et al., 2013). A critical advantage of real-valued vectors is that they can

encapsulate word meaning and context, as evidenced by words with similar contexts having similar

vector distributions (Pennington et al., 2014). For example, Chen et al. (2013) showed that the vector

representations capture word relations such as synonyms, antonyms, and regional spelling variations.

Neural network models have distinct architectures. Each architecture often accompanies a distinct

optimization algorithm during training and a sampling method to generate new examples during testing.

Notable architectures encompass feedforward-based (Bengio et al., 2000), recurrent-based (Mikolov

et al., 2010), and transformer-based (Vaswani et al., 2017). For example, recurrent-based models

include the vanilla version of RNNs (Vanilla-RNNs; Mikolov et al., 2010), Long Short-term Memory

Networks (LSTMs; Hochreiter and Schmidhuber, 1997), and Gated Recurrent Units (GRUs; Chung

et al., 2014).

We organize this section in two aspects. In Sec. 2.3.1, we use Vanilla-RNNs as an example to introduce

the continuous representations in neural network LMs. In Sec. 2.3.2, we shortly describe state-of-the-art

LMs, providing an overview of the current paradigm in neural network LMs.

2.3.1 Recurrent Neural Network Language Models

In this section, we delve into the vanilla version of RNNs (Vanilla-RNNs) in-depth, introducing its

model architecture, training process, and sampling method. This detailed introduction is necessary

because certain RNNs hold mathematical relevance to our proposed models, as specified in Sec. 5.3.2.

10
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Figure 2.2 A toy example to show how Vanilla-RNNs predict the next word at time t during training (Jurafsky,
2000). The sequence is [so, long, and, thanks, for, <EOS>], where <EOS> is a special token used to
denote the end of the sequence (Here, |V | = 6). The rectangles with diagonal lines denote the computation
of Eq. 2.5. Note that one-hot vectors f(x(t)) are commonly replaced by pre-trained word embeddings such as
GolVe (Pennington et al., 2014) in practice. The normalization function ψ is typically the softmax function.
The initial hidden state h(0) is typically the last hidden state of the previous sequence or initialized from the
uniform distribution U(−

√
k,−

√
k) where k = 1

number of hidden units .

Thus, we include this material as a reference for readers who may not be well-versed in the deep

learning community’s terminology and concepts.

Model Architecture

Vanilla-RNNs process the input sequence one word at a time, attempting to predict the next word from

the current word and previous hidden state as depicted in Fig. 2.2, which is defined as (Mikolov et al.,

2010):

h(t) = φ(Ah(t−1)+Bf(x(t))+b), (2.5)

where

• h(t) ∈ RH is the hidden state of Vanilla-RNNs at time step t;
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• A ∈ RH×H is the weight matrix for the hidden-to-hidden connections, and B ∈ RH×|V | is the

weight matrix for the input-to-hidden connections;

• φ denotes a nonlinear activation function, often chosen to be a sigmoid or tanh activation;

• b ∈ RH is the bias term for the hidden state;

• f(x(t)) is one-hot encoding, which outputs a vector that has a single element that is equal to 1

and 0s in all other positions. The position of the "1" element in the vector corresponds to the

index of the word x(t) in the vocabulary. In addition to one-hot vectors, the inputs can be word

embeddings or intermediate layer computations that keep the sequential structure.

Once the hidden state has been updated, the output ŷ(t) ∈ R|V | at time step t is defined as:

ŷ(t) = ψ(Ch(t)), (2.6)

where C ∈ R|V |×H is a weight matrix for the hidden-to-output connections; and ψ is often a nonlinear

normalization function such as softmax, ensuring that components in ŷ(t) are non-negative and sum to

1. The output ŷ(t) is typically viewed as Px(1:t−1) : V →R[0,1] (i.e., the conditional probability distribution

of the random variable X (t) given X (1:t−1) = x(1:t−1) defined by the model (Jurafsky, 2000)).

Vanilla-RNNs possess a search space of V at each time step as shown in Eq. 2.6, unlike n-gram

LMs having a search space of V n. This characteristic mitigates the curse of dimensionality, enabling

Vanilla-RNNs to manage longer sequences without the need to truncate them into n-grams. More

important, the long sequence modeling capability of Vanilla-RNNs is empowered by recursively

encoding the information of words and their previous content into real-valued vectors. Each word in

the vocabulary corresponds to a column of B, and the hidden state is designed to encapsulate some

information about all preceding words from the beginning of the sequence. These real-valued vectors

can partly capture the semantic and syntactic characteristics of sequences (Pennington et al., 2014),

making them a fundamental building block for developing neural network LMs.
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Training Process

During training, Vanilla-RNNs need a loss function to gauge the error between the prediction output

ŷ(t)and provided target value y(t). Formally, suppose the indices of words in the sequence x =

[x(1),x(2), · · · ,x(L)] is w1,w2, · · · ,wL, where wi ∈ [|V |] := {1,2, · · · , |V |}, the estimated probability of

a particular word x(t) in the vocabulary being the next word is the tth component of ŷ(t) (denoted

as ŷ(t)[wt ]). Meanwhile, in language modeling, the groud-truth distribution y(t) is assumed to be

an one-hot vector having y(t)[wt ] = 1 and all the remaining |V |− 1 components being 0 (Jurafsky,

2000).

Vanilla-RNNs typically use cross entropy as the loss function LCE at time t (Jurafsky, 2000):

LCE =− ∑
w∈[|V |]

y(t)[w] log ŷ(t)[w]

=− log ŷ(t)[wt+1]. (2.7)

When minimizing LCE in Eq. 2.7, we are minimizing the negative log likelihood (NLL) of the

probability the model assigns to the next word in the training sequence ŷ(t)[wt+1]. Apart from the

cross-entropy loss, we can use other loss functions in Vanilla-RNNs. Selecting an appropriate loss

function is an important research topic in machine learning. Readers who wish to explore this topic

further may refer to Wang et al. (2020), who have compared 31 classical loss functions.

Vanilla-RNNs are often trained using teacher forcing (Marcus, 1998). This technique provides the

model with the correct historical sequence of words to predict the next word, instead of words predicted

by the model. Specifically, during training, Vanilla-RNNs use the correct sequence of words x(1:t) to

estimate the probability of the next word x(t+1), ignoring the output predicted by the model. Teacher

forcing has also been widely used in Transformer-based models during training (Devlin et al., 2018);

and we will employ it in our proposed models in Ch. 5.

After selecting the loss function, Vanilla-RNNs use a two-pass algorithm for optimizing parameters.

In the forward phase, they compute ŷ(t), accumulate the loss LCE at each step in time, save the value
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of the hidden layer at each step for use at the next time step. In the backward phase, Vanilla-RNNs

process the sequence in reverse, computing the required gradients, computing and saving the error term

for use in the hidden layer for each step backward in time (Jurafsky, 2000). This two-pass approach

is commonly referred to as the Backpropagation Through Time (BPTT) (Werbos, 1974; Rumelhart

et al., 1985; Werbos, 1990). BPTT is a particular type of Backpropagation algorithm (Rumelhart

et al., 1986) applied to the sequence data such as the time series. Most neural network models rely

on the backpropagation algorithm to update their parameters, with gradients computed through this

process (Hinton, 2022).

Sampling Method

Within the probabilities defined by an LM, we can use sampling techniques to generate new sequences

during test time. Sampling from an LM refers to using it to generate new sequences based on its

likelihood as defined by themselves (Jurafsky, 2000). For example, we can use the most commonly

used approach, autoregressive generation, to generate sequences from Vanilla-RNNs. Specifically, we

sample a word in ŷ(1) from using the beginning of sentence marker, <BOS>, as the first input and use

the word embedding for that first word as the input to the network at the next time step. Then, we

sample the next word in the same way until the end of sentence marker, <EOS>, is sampled or a fixed

length limit is reached (Jurafsky, 2000).

2.3.2 State-of-the-art Language Models

Since the advent of RNNs, the field of language modeling has seen a significant amount of development.

Some models no longer follow the Markov assumption and chain rule, such as the Transformer

architecture (Vaswani et al., 2017) employing self-attention mechanisms to learn dependencies between

words in a sequence, regardless of their position. More recently, large pre-trained Transformer-based

LMs, such as the BERT (Devlin et al., 2018) and GPT (Radford et al., 2018) families of models, have

achieved state-of-the-art performance on many tasks. These models with billions of parameters, trained
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on vast amounts of data, have revolutionized the field and continue to drive breakthroughs in natural

language understanding (Min et al., 2021).

This section introduces these large pre-trained LMs’ naming, categories, and applications. We only

briefly touch upon these large LMs, as they are not directly relevant to our research goal of developing

a novel LM with small-scale parameters. We recommend referring to Bommasani et al. (2021) for

readers interested in this topic.

There is yet to be a universally accepted name or definition for the state-of-the-art LMs developed

since 2018. For example, some people refer to them as the large language models (LLMs) (Carlini

et al., 2021), while others call them the foundation models (Bommasani et al., 2021). The term LLMs

emphasizes the technical aspect of these models, which involves neural network LMs with billions of

parameters or more that have been pre-trained on vast amounts of unlabeled text using self-supervised

learning techniques. The term foundation models highlights the sociological impact of these models

and how they have conferred a broad shift in AI research and deployment (Bommasani et al., 2021). In

later sections, we will use the term LLMs to refer to this group of LMs.

The architecture and training process of LLMs can be broadly divided into three classes (Min et al.,

2021) as depicted in Fig. 2.3: autoregressive LMs, masked LMs, and encoder-decoder models. (1)

Autoregressive LMs predict the next word x(i) given all previous words x(1:t−1). Popular examples

include GPT (Radford et al., 2018), GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020). (2)

Masked LMs predict a "masked" word conditioned on all other words in the sequence. Representative

models include BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019). (3) The encoder-decoder

models generate a sequence of words [z(1),z(2), · · · ,z(M)] given an input sequence [x(1),x(2), · · · ,x(L)].

Typical models include BART (Lewis et al., 2019) and T5 (Raffel et al., 2020).

LLMs have revolutionized the applications of language modeling. (1) Before 2018, downstream tasks

mainly used LMs to generate linguistic units or evaluate their fluency. For example, applications

of LMs mainly focused on speech recognition (Kuhn and De Mori, 1990; Jelinek, 1998), spelling

correction (Ahmed et al., 2009), text generation (De Novais et al., 2010), machine translation (Brown
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Figure 2.3 Comparing parameters of popular pre-trained language models: ELMO (Peters et al., 2018),
GPT (Radford et al., 2018), BERT-Large (Devlin et al., 2018), GPT-2 (Radford et al., 2019), T5 (Raffel et al.,
2020), GPT-3 (Brown et al., 2020), LaMDA (Thoppilan et al., 2022), Megatron-Turing NLP (MT NLP) (Smith
et al., 2022), LLaMA (Touvron et al., 2023), PaLM-E (Driess et al., 2023), and GPT-4 (OpenAI, 2023). We
extract the release date, number of parameters, and architecture of each model from its official website or earliest
arXiv version. When writing this thesis, official information on GPT-4 regarding its architecture and number of
parameters is unavailable.

et al., 1993; Schwenk et al., 2006), semantic parsing (Deschacht et al., 2012; Andreas et al., 2013), and

text summarization (Hermann et al., 2015). (2) Since 2018, LLMs has been used as a powerful tool

for tasks requiring high levels of text understanding (Jiang et al., 2020; Bommasani et al., 2021). For

example, LLMs have been used to answer factoid questions (Radford et al., 2019), answer common

sense queries (Trinh and Le, 2018; Sap et al., 2019), or extract factual knowledge about relations

between entities (Petroni et al., 2019; Soares et al., 2019). Furthermore, the widely recognized

model, GPT-4, has been used to solve novel and difficult tasks that span mathematics, coding, vision,

medicine, law, and psychology (OpenAI, 2023). Since the effectiveness of GPT-4 is strikingly close

to human-level, Bubeck et al. (2023) argued that it could reasonably be viewed as an early (yet still

incomplete) version of an Artificial General Intelligence system.
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2.4 Evaluation Metric: Perplexity

The performance of LMs can be evaluated extrinsically or intrinsically (Jurafsky, 2000). Extrinsic

evaluation refers to applying LMs in a downstream task (e.g., machine translation) and measuring the

extent to which the application is improved. By doing so, we can determine if a particular improvement

to the LM truly benefits the application. However, performing end-to-end evaluations on large NLP

systems can be prohibitively expensive. Therefore, an intrinsic evaluation metric is necessary to

quickly assess potential improvements, which will be conducted independently of any downstream

tasks or applications (Jurafsky, 2000). The most commonly used intrinsic metric is perplexity (PPL;

Jelinek et al., 1977), which we will employ in our experimental evaluation in Ch. 6. In this section, we

provide an overview of its fundamental concepts.

Given the non-empty sequence x = [x(1),x(2), · · · ,x(L)] in the test set, the perplexity per word computes

the geometric mean of the inverse probability assigned by a model to each word, given previous

words (Jurafsky, 2000):

PPL(x) = P̃(x)−
1
L

= L

√
L

∏
t=1

1
P̃
(
x(t) | x(1), · · · ,x(t−1)

) . (2.8)

The metric is based on the principle that a model assigned higher probability to the test set is more

accurate and better at predicting it. Thus, according to Eq. 2.8, lower perplexity scores mean higher

conditional probabilities of sequences in the test set, which indicates more effective LMs.

The notion of the perplexity per word in Eq. 2.8 is defined from the perspective of natural language pro-

cessing. This concept actually arises from the information-theoretic concept of cross entropy (Jurafsky,

2000). We now explain how the perplexity per word relates to the cross-entropy formula. Formally, let
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us consider a language as a stochastic process ℓ that produces a sequence of words. The cross-entropy

rate of ℓ (a.k.a per-word cross-entropy) is defined as (Jurafsky, 2000):

H(P, P̃) = lim
L→∞

−1
L ∑

x∈ℓ
P(x) log P̃(x), (2.9)

where P is the actual probability distribution that generated the data, and P̃ is the distribution defined

by a model. The Shannon-McMillan-Breiman theorem (Algoet and Cover, 1988; Cover, 1999) states

that if the language is stationary and ergodic (Jurafsky, 2000),

H(P, P̃) = lim
L→∞

−1
L

log P̃(x). (2.10)

That is, we can take a single sequence that is long enough instead of summing over all possible

sequences when computing the cross-entropy rate (Jurafsky, 2000); the intuition behind the Shannon-

McMillan-Breiman theorem is that a long-enough sequence of words will contain in it many other

shorter sequences and that each of these shorter sequences will reoccur in the longer sequence

according to their probabilities (Jurafsky, 2000). It is important to emphasize that natural language is

not stationary (Jurafsky, 2000), as the probability of upcoming words can depend on arbitrarily distant

and time-dependent events. Thus, Eq. 2.10 only gives an approximation to the correct distributions and

entropies of natural language (Jurafsky, 2000).

Though the cross-entropy rate is defined in the limit as the length of the observed word sequence

goes to infinity (L → ∞), we often approximate it with a (sufficiently long) sequence of fixed length:

H(x) =− 1
L log P̃(x) (Jurafsky, 2000). Thus, the cross-entropy rate can be linked to the perplexity per

word:

PPL(x) = 2H(x) = P̃(x)−
1
L . (2.11)

In practical implementations, PPL is typically computed using Eq. 2.11 instead of Eq. 2.8 (i.e., taking

the exponent of the cross-entropy rate).
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We need to consider two deficiencies of PPL when using it in experiments. First, PPL is viewed as

a quick evaluation measure that correlates with extrinsic improvements (Jurafsky, 2000). However,

improving PPL does not necessarily guarantee an extrinsic improvement in downstream tasks such as

speech recognition (Clarkson and Robinson, 2001; Iyer et al., 1997; Martin et al., 1997). Second, PPL

depends not only on the LM but also on vocabulary size and text type used during training. Thus, valid

comparisons can only be made when the same dataset is used (De Mulder et al., 2015).
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3
Preliminaries: Tensor Tools

This chapter is organized as follows: We present the notation, diagrams, and tensor operations in

Sec. 3.1 to cater to readers with different background knowledge. Following this, we introduce

tensor networks, mainly focusing on Tensor-Train decompositions in Sec. 3.2. Complete technical

introductions can be found in standard textbooks (e.g., Itskov, 2009; Bi et al., 2022).

3.1 Tensor Computations

We present the notation and diagrams in Sec. 3.1.1 and basic tensor operations used throughout the

thesis in Sec. 3.1.2.

3.1.1 Notation and Diagrams

Table 3.1 The notations used throughout the thesis.

Numbers, Arrays, and Sets
A Scalar (integer or real)
A Vector, Matrix or Higher-order tensors (order three or higher)
N+ The shorthand for the natural without zeros (i.e., {1,2, · · ·})
R[0,1] The shorthand for the set: {x ∈ R|0 ≤ x ≤ 1}
[K] The shorthand for the set, {1, · · · ,K}, where K ∈ N+

Indexing
Ai Element i of vector A, with indexing starting at 1
Ai j Element i, j of matrix A
Ai jk Element i, j,k of a third-order tensor A
Ai,:,: 2-D horizontal slice of a third-order tensor

We use the following definition of a tensor, in keeping with the aim of this thesis and existing

research (Kolda and Bader, 2009; Orús, 2014; Bridgeman and Chubb, 2017):
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Figure 3.1 A quick introduction to tensor diagram notation. There are two rules of tensor diagrams: (1) solid
shapes notate tensors with some ’legs’ corresponding to their indices; and (2) connecting two index lines denotes
a contraction (see Def. 3.1.2). We may augment our equations with these diagrams to make them easier to
understand in this thesis.

Definition 3.1.1 (Orús, 2014). A tensor is a multidimensional array of real or complex numbers.

For example, vectors and matrices are tensors. Given L ∈ N+ and Ik ∈ N+, ∀k ∈ [L], the elements

of A ∈ RI1×I2×···×IL is denoted as Ai1,··· ,iL ∈ R, where ik ∈ [Ik]. This thesis also denotes tensors using

diagram notation (Penrose, 1971) as depicted in Fig. 3.1a. Note that though we define tensors as

multidimensional arrays, it is also common to define them as the tensor product of vector spaces (Kolda

and Bader, 2009).

The order of a tensor is the number of indexing entries in the tensor, and a particular indexing

entry is called a mode. The term dimension represents the number of values an index can take in a

particular mode. For example, a vector is a first-order tensor; a matrix is a second-order tensor; and

A ∈ RI1×I2×···×IL has order L and dimension Ii in mode i where i ∈ [L]. The two-dimensional sections

of a tensor are usually called the slices, defined by fixing all but two indices (Kolda and Bader, 2009).
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The slices of a third-order tensor A are denoted by Ai,:,: (horizontal slices), A:, j,: (lateral slices), A:,:,k

(frontal slices).

We often use diagrams to describe tensor contraction as depicted in Fig. 3.1b, which is defined as:

Definition 3.1.2 (Orús, 2014). A tensor contraction is the sum of all the possible values of the repeated

indices of a set of tensors.

For example, the matrix product, Ai j = ∑
D
k=1 BikCk j, is the contraction of index k, which amounts to

the sum over its D possible values. One can also have more complicated contractions, such as this

one (Orús, 2014):

Fγωρσ =
D

∑
α,β ,δ ,ν ,µ=1

Aαβδσ BβγµCδνµωEνρα ,

where α,β ,δ ,ν and µ ∈ [D] are contracted indices.

3.1.2 Tensor Operations

Now we introduce several tensor operations that will be used in this thesis. The first operation is

un f olding, which will reorder the elements of an order-L tensor into a matrix (Kolda and Bader, 2009).

In this thesis, we consider one type of unfolding of a tensor A, which we refer to as the reshape.

Definition 3.1.3 (Oseledets, 2011). The reshape of a tensor A ∈ RI1×I2×···×IL , denoted here as A[k], is

a (I1I2 · · · Ik) by (Ik+1Ik+2 · · · IL) matrix, whose elements are taken column-wise from A, that is:

(A[k])i1···ik,ik+1···iL = Ai1,··· ,ik,ik+1,··· ,iL . (3.1)

where the multi-index i1...iL is defined as:

i1 · · · iL = i1 +(i2 −1)I1 + · · ·+(iL −1)I1 · · · IL−1.
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Given an Lth-order tensor A, it is possible to have L unfoldings and L−1 reshapes.

Another fundamental manipulation of tensors is the permute function. Permute allows the index

ordering of a tensor to be changed (but does not change the number of indices). For example, given

A ∈ R2×3×4×5, we can reorder its mode-1 and mode-2 to Ã ∈ R3×2×4×5, and Ai1,i2,i3,i4 = Ãi2,i1,i3,i4 .

Definition 3.1.4 (Cohen et al., 2016). The tensor product of two tensors A (order L1) and B (order L2)

is denoted by A⊗B (order L1 +L2) and is defined as:

(A⊗B)i1,i2,··· ,iL1+L2
= Ai1,i2,··· ,iL1

·BiL1+1,iL1+2,··· ,iL1+L2
.

Notice that when L1 = L2 = 1, the tensor product reduces to an outer product between vectors.

Definition 3.1.5 (Kolda and Bader, 2009). The inner product of two same-sized tensors A,B ∈

RI1×I2×···×dN is the sum of the products of their entries:

⟨A,B⟩=
I1

∑
i1=1

I2

∑
i2=1

· · ·
IL

∑
iL=1

Ai1,i2,...,iLBi1,i2,...,iL .

Definition 3.1.6 (Kossaifi et al., 2020). The generalized inner product of two tensors A∈RI1×I2×···×IL×Ix

and B ∈ RI1×I2×···IL×Iy along the same-sized L modes is defined as:

⟨A,B⟩L =
I1

∑
i1=1

I2

∑
i2=1

· · ·
IL

∑
iL=1

Ai1,i2,...,iLBi1,i2,...,iL .

with ⟨A,B⟩L ∈ RIx×Iy .
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Definition 3.1.7 (Kolda and Bader, 2009). The Frobenius norm of a tensor A ∈ RI1×I2×···×IL is the

square root of the sum of the squares of all its elements:

∥A∥F =

√√√√ I1

∑
i1=1

I2

∑
i2=1

· · ·
IL

∑
iL=1

A2
i1,i2,...,iL .

Thus, ∥A∥F =
√

⟨A,A⟩. Note that the squared Frobenius norm is defined as: ∥A∥2
F = ⟨A,A⟩ (see Eq.

2.61 in Clerckx and Oestges, 2013).

Finally, we introduce the tensor rank, one of the most important concepts in tensor computations:

Definition 3.1.8 (Kolda and Bader, 2009). An Lth-order tensor A ∈ RI1×I2×···×IL is rank one if it can

be written as the outer product of L vectors x(1) ∈ RI1,x(2) ∈ RI2, · · · ,x(L) ∈ RIL:

A = x(1) ◦x(2) ◦ · · · ◦x(L),

where ◦ means the outer product.

This means that each element of the tensor is the product of the corresponding vector elements:

Ai1,i2,··· ,iL = x(1)i1 x(2)i2 · · ·x(L)iL , ∀1 ≤ in ≤ In, n ∈ [L].

Definition 3.1.9 (De Lathauwer et al., 2000; Definition 4). The rank of A ∈RI1×I2×···×IL is the minimal

number of rank-one tensors that yield A as a linear combination and we denote it by rank(A).

3.2 Tensor Networks

We briefly introduce tensor networks’ definitions, properties, and applications in Sec. 3.2.1. Then, we

illustrate the definition and main theorems of Tensor-Train (TT) decompositions in Sec. 3.2.2.
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3.2.1 Basic Concepts and Terminology

Definition 3.2.1 (Orús, 2014). A tensor network is a non-empty set of tensors where some, or all, of its

indices, are contracted according to some pattern.

A tensor network (TN) should satisfy two basic concepts according to Def. 3.2.1: contraction and

pattern. While Def. 3.1.2 outlines the definition of contraction, the term pattern has not been explicitly

defined in a precise manner. For example, the pattern in a TN may refer to either its geometric or

mathematical pattern. Other work, such as that proposed by Bridgeman and Chubb (2017), defined

a TN as a diagram that tells us how to combine several tensors into a single composite tensor. This

statement, unlike Def. 3.2.1, did not mention a particular pattern of contraction in TNs. Thus, although

these statements provide an intuition about the term tensor networks, they do not constitute a strictly

formalized definition, and further mathematical formalization is necessary.

TNs have proven an important tool in attempting to overcome the curse of dimensionality and have

contributed to the theoretical understanding of quantum wave functions, particularly regarding quantum

entanglement (Orús, 2019). This issue, discussed in Sec. 2.2.2, poses difficulties in developing LMs. It

is also one of the biggest hindrances in the theoretical and numerical study of quantum many-body

systems, owing to the exponential growth of the number of dimensions of the Hilbert space (Bridgeman

and Chubb, 2017).

To gain a deeper understanding of TNs, let us consider a quantum many-body system formed from a

composition of L individual systems of dimension D, and its description is governed by the following

wave function:

|Ψ⟩=
D

∑
i1,i2,··· ,iL

Ci1,i2,··· ,iL |i1⟩⊗ |i2⟩⊗ · · ·⊗ |iL⟩, (3.2)

where ⊗ denotes tensor product introduced in Def. 3.1.4, each |it⟩ denotes a vector in a d-dimensional

Hilbert space H with an orthogonal basis, and the dimension of the full Hilbert space H⊗L is DL. Thus,

the order-L tensor Ci1,i2,··· ,iL has DL entries, giving it a space complexity of O(2L). Consequently, the
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PEPS

TTN
MERA

MPS / Tensor Trains

|Ψ⟩

Figure 3.2 Examples of tensor network decompositions (Evenbly, n.d.): Matrix Product States (MPS) (Perez-
Garcia et al., 2006), Tree Tensor Networks (TTN) (Shi et al., 2006), the Multi-scale Entanglement Renormaliza-
tion Ansatz (MERA) (Vidal, 2007), and Projected Entangled Pair States (PEPS) (Verstraete and Cirac, 2004).
The introduction of the diagrammatic notation is presented in Fig. 3.1.

complete description of the wave function |Ψ⟩ is not achievable in polynomial time, rendering it an

intractable task (Goldreich, 2008; Sipser, 1996).

A generic way to deal with the wave function is to decompose the higher-order tensor Ci1,i2,··· ,iL into a

TN consisting of lower-order tensors (Verstraete et al., 2008; Orús, 2014). This process, referred to as

tensor decompositions, yields various TNs depending on the chosen decomposition, as exemplified

in Fig. 3.2. The best choice of tensor decompositions depends on the geometry of the problem as

well as its physical properties (Bridgeman and Chubb, 2017). Note that tensor decompositions rely

on multiplicative interactions to represent complex correlations within data; this linearity gives us a

convenient mathematical structure to represent and manipulate correlated data (Miller et al., 2021).

3.2.2 Tensor-Train Decomposition

Let A ∈ RI1×I2×···×IL , its TT-decomposition is given by (Oseledets, 2011):

Ai1,··· ,iL = G(1)
i1,:G

(2)
:,i2,: · · ·G

(L−1)
:,iL−1,:G

(L)
:,iL , (3.3)
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where G(k) ∈ RRk−1×Ik×Rk , for k ∈ [L] are called the TT-cores; Rk for k ∈ [L] are called the TT-ranks

and R0 = RL = 1; and R = max1≤k≤L Rk is called the maximal TT-rank.

The TT-decomposition of a tensor can be written as the TT-format:

Definition 3.2.2 (Oseledets, 2011). A tensor A ∈ RI1×I2×···×IL is said to be in TT-format if its elements

are given by:

Ai1,··· ,iL =
R1

∑
α1=1

R2

∑
α2=2

· · ·
RL−1

∑
αL−1=1

G(1)
i1α1

G(2)
α1i2α2

· · ·G(L)
αL−1iL , (3.4)

We next recall one of the main theorems for the TT-decomposition that gives a recursive way to

compute it.

Theorem 3.2.1 (Oseledets, 2011; Thm. 2.1). If for each unfolding matrix A[k] of form (3.1) of a tensor

Ai1,··· ,iL with

rank(A[k]) = Rk, (3.5)

then there exists a decomposition (3.3) with TT-ranks not higher than Rk.

Proof. Consider the first unfolding of A and its dyadic (skeleton) decomposition A[k] = UV⊤ , which

can be written in the index form

(A[1])i1,i2···iL =
R1

∑
α1=1

Ui1,α1(V
⊤)

α1,i2···iL ,

because rank(A[1]) = R1. Then, the first TT-core is given by the matrix G(1) such that G(1)
i1,α1

= Ui1,α1 .

The matrix V can be expressed as:

V = A⊤
[1]U(U⊤U)−1 = A⊤

[1]W,
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or in the index form:

Vi2···iL,α1
=

I1

∑
i1=1

(A⊤
[1])i2···iL,i1Wi1,α1, (3.6)

where W = U(U⊤U)−1.

Now we treat the matrix V as a (L − 1)th-order tensor V̂ with (α1i2) as one long index, which

denotes its elements as V̂
α1i2,i3,··· ,iL . To show that rank(V̂[k]) ≤ Rk, let us consider the unfoldings

(V̂[k])α1i2···ik,ik+1···iL for k = 2, · · · ,L. Since (3.5) holds, A can be reshaped and decomposed as:

(A[k])i1···ik,ik+1···iL =
Rk

∑
β=1

Fi1···ik,β (J
⊤)

β ,ik+1···iL .

Using Eq. 3.6, we obtain:

(V̂[k])α1i2···ik,ik+1···iL =
I1

∑
i1=1

Rk

∑
β=1

Fi1···ik,β (J
⊤)

β ,ik+1···iLWi1,α1

=
Rk

∑
β=1

H
α1i2···ik,β (J

⊤)
β ,ik+1···iL (3.7)

where we treat Fi1···ik,β as F̃i2···ik,β ,i1 and thus Hi1···ik,β ,α1
= F̃i2···ik,β ,i1Wi1,α1 . From (3.7) we have V̂[k]

whose row and column indices are now separated and rank(V̂[k])≤ Rk,∀k ∈ [L].

The process can be continued by induction. Now if we consider the unfolding V̂[1], we have:

(V̂[1])α1i2,i3···iL =
R2

∑
α2=1

K
α1i2,α2

(E⊤)
α2,i2···iL .

Then the second TT-core is given by the third-order tensor G(2) such that (G(2))[2] = K. We can iterate

this process to find the other core tensors G(k) for k = 3, · · · ,L.

The proof of Thm. 3.2.1 gives a recursive way to compute the TT-decomposition of an Lth-order

tensor A. Following Thm. 3.2.2, Oseledets (2011) considered an algorithm that computes the TT-
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decomposition using the truncated Singular Value Decomposition (SVD) instead of the exact one; the

introduced error can be estimated as shown in the following theorem.

Theorem 3.2.2 (Oseledets, 2011; Thm. 2.2). Suppose that the unfoldings A[k] of the tensor A ∈

RI1×I2×···×IL can be approximated by matrices of low rank Âk:

A[k] = Âk +Ek, rank(Âk) = Rk, ∥Ek∥F = εk, k ∈ [L−1]. (3.8)

Then truncated TT-SVD computes a tensor B in the TT-format with TT-ranks Rk and

∥A−B∥F ≤

√√√√L−1

∑
k=1

ε2
k . (3.9)

This truncated TT-SVD is reported in Algorithm 1. Note that the numel(·) and reshape(·) functions in

this algorithm refer to the MATLAB’s functions (Oseledets, 2011).

Algorithm 1 Truncated TT-SVD [Oseledets (2011), Algorithm 1]

Require: Tensor A ∈ RI1×I2×···×IL , prescribed accuracy ε

Ensure: Cores G(1), · · · ,G(L) of the TT-approximation B to A in the TT-format with TT-ranks Rk equal to the
δ -ranks of the unfoldings A[k] of A, where δ = ε√

L−1
∥A∥F . The computed approximation satisfies

∥A−B∥F ≤ ε∥A∥F .

1: Compute the truncation parameter δ = ε√
L−1

∥A∥F .
2: Create a copy of the original tensor M1 = A.
3: Set R0 = RL = 1.
4: for k = 1, · · · ,L−1 do
5: Mk = reshape(Mk, [Rk−1 · Ik,

numel(Mk)
Rk−1·Ik

])

6: Compute the δ -truncated SVD, Mk = UkΣΣΣkV⊤
k +Ek where ∥Ek∥F = δ

and Rk = rankδ (Uk);
7: New core: G(k) = reshape(Uk, [Rk−1, Ik,Rk]).
8: Mk+1 =ΣΣΣkV⊤

k .
9: end for

10: Set the last TT-core G(L) = ML.
11: Return TT-cores G(k) ∈ RRk−1×Ik×Rk , for k ∈ [L−1].
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4
Related Work

We organize this chapter as follows: (1) In Sec. 4.1, we present a historical review of the tensor network

language models (TNLMs), clarify their research objectives, and explain their paradigm. This section

represents a pioneering effort to untangle and assess this research domain. (2) In Sec. 4.2, we seek to

shed light on future research directions of TNLMs and offer our outlook to experienced researchers.

To achieve this goal, we focus on recent advances in recurrent neural networks (RNNs). This direction

is chosen because RNNs have similar research objectives and mathematical relationships with TNLMs,

whose innovations can illuminate the development of TNLMs. (3) Building upon the two sections, we

share our thoughts on the limitations and potential improvements of TNLMs in Sec. 4.3.

4.1 Advances in Tensor Network Language Modeling

The section is structured as follows: a historical review in Sec. 4.1.1, prior motivations and research

objectives in Sec. 4.1.2, the current paradigm in Sec. 4.1.3.

4.1.1 Historical Review

In the past decade, applications of TNs underwent a surge of progress in various fields, including

quantum gravity and holography (Han and Hung, 2017), error-correcting codes (Jahn and Eisert,

2021), classical data compression (Cichocki et al., 2017) and big data analysis (Cichocki, 2014).

In deep learning, prior research used TNs to analyze the theoretical properties of neural network

models. A better understanding of feed-forward, convolutional and recurrent architectures has been

gained, including parameters compression (Novikov et al., 2015), expressive power (Cohen et al., 2016;
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Table 4.1 Timeline of tensor networks used in language modeling or density estimation. The term theoretical
proposals refers to papers that put forward a theoretical framework without experimental evaluation. The term
small-scale vocabulary denotes papers with experiments on sequence modeling with small-scale vocabulary
size (|V | ≤ 38). Tensor networks used in prior research include the Multi-scale Entanglement Renormalization
Ansatz (MERA; Vidal, 2007), Matrix Product States (MPS; Perez-Garcia et al., 2006), and Tree Tensor Networks
(TTNs; Shi et al., 2006).

Developing Stage Types of Tensor Networks

Theoretical
proposals

MERA (Pestun and Vlassopoulos, 2017)
MPS (Pestun et al., 2017)

Small-scale
vocabulary

MPS (Han et al., 2018)
TTNs (Cheng et al., 2019)
MPS (Stokes and Terilla, 2019)
MPS (Miller et al., 2021)
MPS (Novikov et al., 2021)
TTNs (Tang et al., 2022)
MPS (Hur et al., 2022)

Khrulkov et al., 2018), and depth efficiency for long-term memory (Levine et al., 2018). In natural

language processing, prior research used TNs to devise language models, which we refer to as the

Tensor Network Language Models (TNLMs). The term TNLMs denotes the use of TNs to learn the

joint probability distribution of sequences, with the result that TNLMs can generate new sequences

by sampling from the learned probability distribution. This section focuses on previous research on

TNLMs as listed in Table 4.1 and does not delve into the use of TNs in other fields.

The timeline of TNLMs can be categorized into two stages, theoretical proposals and small-scale

vocabulary, from an experimental perspective. (1) As theoretical proposals, Pestun and Vlassopoulos

(2017) based the model on the Multi-scale Entanglement Renormalization Ansatz (MERA; Vidal,

2007), and Pestun et al. (2017) used the Matrix Product States (MPS; Perez-Garcia et al., 2006).

Neither of them has an experimental evaluation of their models. Note that MPS is also known as the

TT-format (see Def. 3.4) (Oseledets, 2011); for consistency, we use "MPS" in this chapter. (2) The

second category includes models that have been used to model sequences with small-scale vocabulary

size (|V | ≤ 38). Most of them were based on MPS (Han et al., 2018; Stokes and Terilla, 2019; Novikov

et al., 2021; Miller et al., 2021), except that Cheng et al. (2019) and Tang et al. (2022) used Tree Tensor

Networks (TTNs).
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4.1.2 Prior Research Objectives

This section clarifies the discrepancy between the research objectives of papers in the two categories

presented in Table 4.1. In essence, theoretical proposals aimed to capture long-range correlations in

language by TNs, while the models with small-scale vocabulary used TNs for diverse purposes.

As theoretical proposals

Pestun and Vlassopoulos (2017) and Pestun et al. (2017) aimed to exploit the capabilities of TNs to

capture the "higher-order statistical properties of natural language" that were beyond the ability of

current LMs. Specifically, they argued that LMs should capture the long-range correlations in human

language. To elaborate on this point, we will introduce the concept of correlation function, as well as

the definition of long-range correlations.

Definition 4.1.1 (Tanaka-Ishii, 2021). Let S ∈ N+ represent the number of elements between the first

element of two sequences. A correlation function is a function C(S) that measures the statistical

correlation between the two sequences.

For example, the sequence could be a list of ordered characters or words. Def. 4.1.1 generally describes

the category of correlation functions. It appears that a rigorous mathematical definition of the entire

category is yet to be established. Within this category, notable instances of correlation functions include

the mutual information function I(S) and autocorrelation function ACF(S) (Tanaka-Ishii, 2021). For

example, let us focus on I(S) to understand how to use C(S) in natural language. Let x represent a text

composed of two sequences, each of length L ∈ N+, such that the distance between the first word of

each sequence is S ∈N+. The two sequences may overlap. X (i) refers to the random variable located at

position i in x. The averaged mutual information function, I : N+ → R≥0, of two sequences is defined

as (Tanaka-Ishii, 2021):

I(S) =
L

∑
i=1

∑
x(i),x(i+S)∈V

P̃
(

X (i) = x(i),X (i+S) = x(i+S)
)

log
P̃
(
X (i) = x(i),X (i+S) = x(i+S)

)
P̃
(
X (i) = x(i)

)
P̃
(
X (i+S) = x(i+S)

) , (4.1)
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𝑠

𝐶(𝑠): A function to measure the statistical correlation between two sequences and .

Figure 4.1 Schematic illustration of long-range correlation analysis (Tanaka-Ishii, 2021). Each solid circle
represents a word or character in the text. C(S) is a correlation function to measure the statistical correlation
between two sequences, such that the distance between the first word of each sequence is S.

where V is the vocabulary set, and x(i),x(i+S) ∈V denotes specific words at the corrsponding positions.

The averaging can be accompanied by an oscillating function such as sin (Ebeling and Pöschel, 1994).

In this type of experiment, the vocabulary V is typically collected in the entire dataset (Ebeling and

Pöschel, 1994; Ebeling and Neiman, 1995; Montemurro and Pury, 2002; Altmann et al., 2012); Hence,

when computing Eq. 4.1, P̃(X (i) = x(i)) ̸= 0, ∀x(i) ∈V . If we use a large vocabulary set to assess a

small dataset, we can use engineering techniques, such as smoothing, to avoid a word that has zero

probability.

The definition of long-range correlations is based on how the value of a correlation function changes,

as outlined below:

Definition 4.1.2 (Tanaka-Ishii, 2021). A text is long-range correlated if a correlation function, C(S),

follows a power function with respect to the distance S between two of its sequences as follows:

C(S) ∝ S−γ , S ∈ N+, γ ∈ R(0,1), (4.2)

where γ is the power exponent indicating the degree of decay of C(S) with respect to S.

For example, Fig. 4.1 illustrates a method of computing C(S) in a text. This method places a dashed

box at the beginning of the text and moves a solid box toward the end while calculating C(S) at each

step. If C(S) can be characterized as a power function, the text is considered to have a long-range

correlation according to Def. 4.1.2.
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Figure 4.2 Decay of mutual information (Lin and Tegmark, 2017). The mutual information in bits per symbol
is shown as a function of separation d(X ,Y ) = |i− j|, where the symbols Xand Y are located at positions i and
j in the sequence in question, and shaded bands correspond to 1− δ error bars. These human genome data
consist of 177,696,512 base pairs A, C, T, G from chromosome 5 from the National Center for Biotechnology
Information, with unknown base pairs omitted. These Bach data consist of 5727 notes from Partita No. 2, with
all notes mapped into a 12-symbol alphabet consisting of the 12 half-tones C, C#, D, D#, E, F, F#, G, G#, A, A#,
B, with all timing, volume and octave information discarded. The three text corpora are 100 MB from Wikipedia
(206 symbols), the first 114 MB of a French corpus (185 symbols), and 27 MB of English articles (143 symbols).

Prior research has reported long-range correlations in human language (Ebeling and Pöschel, 1994;

Ebeling and Neiman, 1995; Montemurro and Pury, 2002; Altmann et al., 2012). In addition, the power-

law decay of C(S) has also been reported in other domains, including biological systems (Mora and

Bialek, 2011; Tagliazucchi et al., 2012; Linkenkaer-Hansen et al., 2001), music (Levitin et al., 2012;

Manaris et al., 2005) and physics (Bak et al., 1987; Bak et al., 1988). For example, Fig. 4.2 illustrates

the decay of mutual information in three text corpora, music, and human genome sequences.

In their TNLMs proposals, Pestun et al. (2017) and Pestun and Vlassopoulos (2017) emphasized

the failure of capturing long-range correlations in human language by the existing LMs. To support

their claim, they cited the work of Lin and Tegmark (2017), who tested the ability of LMs to capture

long-range correlations in text. Lin and Tegmark (2017) showed that the mutual information of the

generated text by bi-gram LMs decreased exponentially, as depicted in Fig. 4.3. Also, even the widely

used neural network architecture, LSTMs (Hochreiter and Schmidhuber, 1997), encountered difficulties

generating text with long-range correlations. Thus, the two proposals attempted to use TNs to propose

novel architectures for language modeling. Distinct types of TNs exhibit diverse physical geometries,

34



1 10 100 1000
10- 6

10- 5

10- 4

0.001

0.010

0.100

1

Distance between symbols d(X,Y)

M
ut

ua
l i

nf
or

m
at

io
n 

I(X
,Y

) i
n 

bi
ts

Actual WikipediaLSTM-RNN-hallucinated Wikipedia

Markov-hallucinated W
ikipedia

Figure 4.3 Comparison of mutual information between text generated by different models and real-word
natural language (Lin and Tegmark, 2017). The red line is the mutual information of a 100 MB sample of
English Wikipedia. In shaded blue is the mutual information of generated Wikipedia from a trained LSTM
with 3 layers of size 256. The solid black line is the mutual information of a Markov process on single
characters. Lin and Tegmark (2017) also measured the mutual information for generated text using bigram LMs,
which underperforms the LSTMs. Note that the mutual information function used in (Lin and Tegmark, 2017) is
at the character level and N = 1.

and certain types have advantageous theoretical properties for modeling human language (Evenbly

and Vidal, 2011). For example, MERA is scale-invariant and has the asymptotic power-law decay of

correlations (Vidal, 2008; Giovannetti et al., 2008; Pfeifer et al., 2009).

However, Pestun and Vlassopoulos (2017) and Pestun et al. (2017) did not experimentally implement

their models, lacking empirical evidence to support their theoretical claims. This evidence is particularly

critical when researchers endeavor to develop a new LM. Additionally, it is worth noting that Pestun

et al. (2017) did not succeed in creating an LM with power-law decay correlations; they used MPS

that has exponential decay correlations, as widely accepted among researchers (Fannes et al., 1992;

Östlund and Rommer, 1995; Rommer and Östlund, 1997). Although Stoudenmire and Schwab (2016)

claimed that MPS could approximate power-law decays over relatively long distances w.r.t text, no

solid empirical or theoretical analysis supports this claim.

With small-scale vocabulary

Building on the works of Pestun and Vlassopoulos (2017) and Pestun et al. (2017), an advancement in

previous research is that they have evaluated their model on the datasets with small-scale vocabulary
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size (Han et al., 2018; Cheng et al., 2019; Stokes and Terilla, 2019; Miller et al., 2021; Novikov et al.,

2021; Tang et al., 2022; Hur et al., 2022).

Their motivations have shifted away from capturing long-range correlations. Here, we summarize

three explanations suggested in prior literature as follows: (1) MPS has exponential decay corre-

lations (Fannes et al., 1992; Östlund and Rommer, 1995; Rommer and Östlund, 1997). From the

perspective of Def. 4.1.2, this property fails to capture long-range correlations in text. Thus, it is hard

for previous studies to demonstrate the long-range modeling abilities of their MPS-based models. (2)

Def. 4.1.2 fails to measure the effectiveness of the model in long-context scenarios. There is a need

for a benchmark or metric that can evaluate its effectiveness. The first benchmark, however, designed

for this purpose emerged three years after the publication of the two theoretical proposals in 2017,

introduced by Tay et al. (2020). (3) The definition of long-range correlations in Def. 4.1.2 reveals

limitations when evaluating model capacity in long-range scenarios. We provide a detailed discussion

of its limitations in Sec. 4.3.1.

The motivation or research objectives of TNLMs in the category of small-scale vocabulary varies.

To gain a basic understanding of their objectives, we briefly introduce them from the perspective of

deep learning, rather than physics. We recommend that readers refer to the original paper for a more

detailed explanation.

• Han et al. (2018) aimed to build on the connection between unsupervised generative modeling

and quantum physics. Han et al. (2018) used MPS as a Born machine where Born’s rule in

quantum physics is borrowed for representing the joint probability distribution of data with

squared amplitude of a wave function (see Eq. 4.3). Compared with the Hopfield model (Hopfield,

1982) and inverse Ising model, Han et al. (2018) said MPS exhibited a much stronger learning

ability; MPS also enjoyed a direct sampling method (Ferris and Vidal, 2012) much more efficient

than the Boltzmann machines.
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• Cheng et al. (2019) used TTNs as an extension to the Born machines. Compared with MPS, they

stated that TTNs exhibited natural modeling on two-dimensional data, such as images; TTNs are

more favorable than MPS in the growth of correlation length of pixels.

• Stokes and Terilla (2019) used MPS as generative models based on quantum circuits that could

provide an inductive bias for sequence modeling tasks. They said this is an advantage of MPS

compared with restricted Boltzmann machines (Montúfar et al., 2011).

• Miller et al. (2021) stated that the linearity of MPS has yet to be leveraged to develop new

operational abilities. Using "transfer operators," their model can process the sequential inputs in

a parallel manner, with sequences of length L being evaluated in parallel time O(logL). Note

that the input sequence is assumed to be regular expressions since their developed techniques,

transfer operators, link the structure of MPS to that of regular expressions.

• Novikov et al. (2021) believed there was a gap between simple, intuitive models for low-

dimensional data and powerful, capable of solving most difficult tasks, yet very fragile and

hard to theoretically analyze neural network models. To fill this gap, they aimed to build a new

method of nonparametric density estimation using MPS. Their models have several features that

other models do not have (at least not simultaneously), including tractable log-likelihood (unlike

Generative Adversarial Networks (Goodfellow et al., 2020)), exact sampling, ability to calculate

the cumulative density function and exact calculation of the partition function.

4.1.3 Current Paradigm

While prior research has proposed TNLMs with diverse research objectives and motivations, these

models share notable commonalities. These shared traits distinguish TNLMs from neural network

LMs. To expound on this point, we illustrate the paradigm of TNLMs in four steps: (1) representing the

joint probability distribution of sequences with squared amplitude of a wave function, (2) representing

the wave function using a particular TN, (3) learning the parameters of the TN during training, and (4)
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using the TN to sample new sequences during testing. Note that we have introduced the definition and

main theorems of MPS in Sec. 3.2.2; thus, we use that terminology directly in this section.

Representing the Joint Probability Distribution

Given a sequence of L ∈ N+ words, denoted as x = [x(1),x(2), · · · ,x(L)], where each x(t) ∈V represents

the t-th word in the sequence, we define V L as the set of all possible length-L sequences (i.e., x ∈V L).

The first step to build TNLMs is encoding the joint probability of X into the wave function as follows:

P̃(x) =
|Ψ(x)|2

Z
, (4.3)

where Z = ∑x∈V L |Ψ(x)|2 is the normalization factor, which is often referred to as the partition function

in previous TNLMs to draw an analogy with the energy-based models (e.g., LeCun et al., 2006). Note

that V is a finite set, allowing us to calculate Z. Also, Eq. 4.3 ensures P̃(x) is non-negative and that the

sum of all P̃(x) equals 1.

Several studies categorize their models as the "Born machines," where Born’s rule is used to represent

the joint probability distribution of data with squared amplitude of a wave function (Stokes and Terilla,

2019; Cheng et al., 2019; Miller et al., 2021). This interpretation is grounded in Eq. 4.3 satisfying

Born’s rule in quantum physics (i.e., the probability of finding a system in a given state is proportional

to the square of the amplitude of the system’s wave function at that state (Born, 1926)).

Though Eq. 4.3 naturally admits a quantum mechanical interpretation of Ψ(x) as wave functions

over L quantum spins, the potential benefits of this interpretation for devising LMs remain unclear.

In other words, the property of Ψ(x) has yet to be fully explored. For instance, despite Ψ(x) being

complex-valued in quantum mechanics, previous TNLMs are typically real-valued.
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Figure 4.4 TT-ranks of MPS trained with |T | = 1k MNIST samples, constrained to a maximum value
(R = 800) (Han et al., 2018). Each pixel in this figure corresponds to the TT-rank on the right side of the TT-core
associated with the identical coordinate in the original image.

Model Architecture

The second step is selecting a particular TN to represent the wave function. Recall that the full

description of wave functions has a space complexity of O(2L) (see Eq. 3.2), and prior work used

TNs to represent the wave function instead of storing all possible sequences. Most previous research

developed their model architecture based on MPS. Here, we explain two key differences in how

researchers used MPS in this step.

The first difference is the constraints on the TT-ranks. For example, Pestun et al. (2017) and Miller

et al. (2021) assumed that all TT-ranks are equal; they called this form the uniform MPS (u-MPS). On

the other hand, Han et al. (2018) used MPS with the prescribed maximal TT-rank, without any other

restrictions on the rank of a particular TT-core. As depicted in Fig. 4.4, Han et al. (2018) displayed

an example that the TT-ranks around the top and bottom edge of the images remain small, because

those pixels are always inactivated in the images. Conversely, large TT-ranks are concentrated in the

center of the images, where the variation of the pixels is complex. This finding is consistent with

previous research on the applications of MPS in quantum many-body systems (Schollwöck, 2011;

Orús, 2014), which states that as the TT-ranks increase, an MPS improves its ability to parameterize
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more sophisticated functions. Therefore, we expect that the upper bound effectiveness of u-MPS used

in Pestun et al. (2017) and Miller et al. (2021) to be inferior to that of MPS utilizing varying TT-ranks

when handling long-range tasks.

Another major difference is the constraint on TT-cores. For instance, MPS has gauge degrees of

freedom, which means that a TT-core can be invariant after inserting its identity I = MM−1. Exploiting

the gauge freedom, Han et al. (2018) restricted TT-cores into canonical form; a TT-core is called

left-canonical if it satisfies ∑ik∈[|V |](G
(k)
:,ik,:)

T G(k)
:,ik,: = I. The canonical form can reduce the computation

cost of the normalization factor Z. More details about the canonical condition and calculation of Z can

be found in Han et al. (2018).

Optimization

The third step is optimizing the parameters of a particular TN. Normally, this step requires a cost

function and a gradient descent algorithm. For example, Han et al. (2018) used the negative log-

likelihood (NLL) as the cost function, which is defined as:

L=− 1
|T | ∑

x∈V L

log P̃(x), (4.4)

where |T | ∈ N+ denotes the number of examples in the training set. When a model assigns zero to

P̃(x), prior TNLMs use engineering techniques such as smoothing to avoid this issue. It is worth

emphasizing that minimizing L is equivalent to minimizing the Kullback-Leibler divergence (Kullback

and Leibler, 1951) between the model probability distribution P̃(x) and empirical distribution defined

by the training set. Other cost functions are available; For example, Miller et al. (2021) used the mean

absolute error.

After choosing a cost function, TNLMs require an optimization algorithm to update its parameters.

For example, Han et al. (2018) employed an algorithm similar to the Density Matrix Renormalization

Group (DMRG; White, 1992) for optimizing their model.
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Figure 4.5 Illustration of parallel and sequential evaluation of the sequence [long, and, thanks, for]
represented by MPS (Miller et al., 2021), where the indices of words in the sequence is w1,w2, · · · ,w4. Note
that G(2)

:,w1,:, · · · ,G
(5)
:,w4,: are the matrix representations of each word. The G(1)

w1,: and G(6)
:,w4 are denoted as boundary

vectors, α and w, in Miller et al. (2021), without any interpretation. We use the notation G(1)
w1,: and G(6)

:,w4 because
we can naturally view the two vectors as <BOS> or <EOS> associated with the word w1 or w4.

Sampling

The fourth and final step is sampling new examples after training. Two distinct approaches have been

proposed. The first approach is sequential and based on conditional probabilities. For example, given

a sequence of L ∈ N+ words, x = [x(1),x(2), · · · ,x(L)], the (k-1)-th word is sampled according to the

conditional probability (Han et al., 2018):

P̃(x(k−1)|x(k),x(k−1), · · · ,x(L)) = P̃(x(k−1),x(k), · · · ,x(L))
P̃(x(k),x(k+1), · · · ,x(L)) . (4.5)

This method is close to how RNNs theoretically generate sequences, with one key difference: RNNs

calculate the conditional probability from left to right as introduced in Eq. 2.6, which is more natural

for modeling sequences of human language.

In addition to sequential calculation, Miller et al. (2021) used the linearity of u-MPS to update its

parameters in a parallel manner. Fig. 4.5 compares parallel and sequential evaluation of a sequence

represented by MPS. As Miller et al. (2021) explained, after obtaining the matrix representations (i.e.,

G(2)
:,w1,:, · · · ,G

(5)
:,w4,:), parallel evaluation involves repeated batch multiplications of nearest-neighbor pairs

of matrices, with the boundary vectors (i.e., G(1)
w1,: and G(6)

:,w4) only incorporated after the matrix product

has been obtained. Sequential evaluation instead uses iterated matrix-vector multiplications starting

with a boundary vector to contract this product. Parallel and sequential evaluation have respective
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costs of O(LR3) and O(LR2), but the former can be carried out in O(logL) parallel time (Miller et al.,

2021), where R is the maximal TT-rank and L is the number of TT-cores.

4.1.4 Comparing TNLMs with Neural Network LMs

Upon explaining the TNLMs paradigm, we observe that prior models with experimental evaluations

mainly concentrate on the problem of density estimation (Silverman, 1986). Specifically, given |T | ∈N+

independent samples, y1,y2, · · · ,y|T | where yi = [y(1)i ,y(2)i , · · · ,y(L)i ] drawn from some ground truth

density P : RL → R, their goal is to estimate P from the empirical distribution (Tang et al., 2022). In

other words, most TNLMs aim to minimize the dissimilarity between the joint probability distribution

P̃ defined by themselves and the empirical distribution defined by the training set. For instance, Han

et al. (2018) used NLL as the cost function to learn the empirical distribution of 1k images.

TNLMs are closer to density estimation models than to neural network LMs from the perspective

of their paradigms. This assertion is supported by two observations. First, TNLMs have specific

characteristics that neural network LMs lack, such as explicit tractable probability density estimation.

Second, the experimental evaluation of TNLMs, including baselines, datasets, and metrics, typically

differs from that used in language modeling. For instance, TNLMs have been benchmarked against

density estimation models rather than LMs. Representative neural network models in density estimation

include Variational AutoEncoders (VAE; Kingma and Welling, 2013), realNVP (Dinh et al., 2016),

PixelCNN (Van den Oord et al., 2016), and GANs (Goodfellow et al., 2020).

TNLMs are close to traditional LMs in language modeling, instead of neural network LMs. (1) Both

TNLMs and most traditional LMs aim to learn the empirical distribution of sequences defined by the

training set. For example, n-gram LMs estimate P using the maximum likelihood estimation on the

empirical distribution of n-grams in the training set (see Sec. 2.2.1). The difference between TNLMs

and traditional LMs is that TNLMs employ continuous representations as learnable parameters (e.g.,

TT-cores in tensor trains) to optimize P̃, whereas traditional LMs use discrete representations (e.g.,

frequency of n-grams). (2) In contrast, neural network LMs aim to learn the distributed representation

of words (Jurafsky, 2000), instead of the empirical distribution defined by the training set. To
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achieve this goal, Vanilla-RNNs are trained to predict the next word based on the previous context,

as elaborated in Sec. 2.3.1. Other neural network LMs may predict masked words in a sequence

or translate a sequence to the target text during training, as described in Sec. 2.3.2. Rarely do they

explicitly compute or learn the joint probability distribution of data during training.

This discrepancy between TNLMs and neural network LMs results in distinct properties and applica-

tions. We will elaborate on how the paradigm of TNLMs may restrict their effectiveness in language

modeling tasks in Sec. 4.3.2.

4.2 Advances in Recurrent Neural Networks

The effectiveness of TNLMs at the moment lags behind neural network LMs in language modeling

tasks. To illuminate potential research avenues for TNLMs, we draw insights from recent RNN

advancements. This choice is motivated by two main reasons: (1) TNLMs are proposed to harness

the potential benefits of TNs to capture long-range correlations in human language (Pestun and

Vlassopoulos, 2017; Pestun et al., 2017). Similarly, RNNs aim to address long-range dependencies in

human language (Bengio and Frasconi, 1994; Hochreiter and Schmidhuber, 1997). Recently, Orvieto

et al. (2023) showed that careful design of Vanilla-RNNs can recover the impressive effectiveness of

SOTA models on long-range reasoning tasks. By closely examining RNN progress, we can uncover

crucial theoretical attributes essential for handling long-range scenarios. (2) MPS, as the simplest

TNs, has a mathematical relationship with some RNNs (see Sec. 5.3.2). Thus, because of their

similar mathematical structure, TNLMs could face similar issues that RNNs have encountered, such as

vanishing and exploding gradients problems.

Our focus in this section is to present the work of Orvieto et al. (2023) in Sec. 4.2.2, with the aim of

gaining insights into the innovations of TNLMs. Before delving into their work, we briefly present the

recent progress in RNNs in Sec. 4.2.1, catering to readers who are new to RNNs. For those seeking a

comprehensive review of RNNs, we recommend referring to Salehinejad et al. (2018).
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Table 4.2 Timeline of some RNNs at a glance, organized according to three aspects of their innovations: gating
mechanisms, connections, and initialization.

Models Gating Connections Initializations

LSTMs (Hochreiter and Schmidhuber, 1997) " % %

GRUs (Chung et al., 2014) " % %

MGUs (Zhou et al., 2016) " % %

QRNNs (Bradbury et al., 2017) " % %

RANs (Lee et al., 2017) " % %

NARX-RNNs (Lin et al., 1996) % " %

TKRNNs (Sutskever and Hinton, 2010) % " %

CW-RNNs (Koutnik et al., 2014) % " %

DilatedRNNs (Chang et al., 2017) % " %

IRNNs (Le et al., 2015) % % "

np-RNNs (Talathi and Vartak, 2015) % % "

uRNNs (Arjovsky et al., 2016) % % "

RIN (Hu et al., 2018) % % "

IndRNNs (Li et al., 2018) % % "

LRUs (Orvieto et al., 2023) % % "

ON-LSTMs (Shen et al., 2019) " " %

SRUs (Lei et al., 2018) " % "

URLSTMs (Gu et al., 2020) " % "

4.2.1 Recent Progress in RNNs

Training RNNs by the backpropagation through time algorithm (Rumelhart et al., 1986) can be difficult

in practice; for example, it suffers from vanishing and exploding gradients (Pascanu et al., 2013),

which limits the ability of RNNs to learn, especially on tasks with long input sequences (Bengio et al.,

1994; Hochreiter et al., 2001). Various methods have emerged to tackle these challenges, spanning

model architecture, input data, and model parameters. For the purposes of this thesis, we classify these

methods into three rough categories according to their main contributions: (1) gating mechanisms, (2)

connections, and (3) initialization. We lists key papers for each area in Table 4.2.

We briefly illustrate the development of these methods in the following paragraphs. For readers seeking

insights into developing TNLMs, we suggest focusing on papers in the "initialization" category. These

techniques center on model parameters instead of the architecture, making them more adaptable to

tensor networks without modifying their theoretical architectures.
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Gating Mechanism

Bengio and Frasconi (1994) observed that the vanilla version of RNNs is hard to capture long-term

dependencies because the gradients tend to either vanish or explode. This issue makes gradient

magnitudes vary and the effect of long-term dependencies hidden, hindering the gradient-based

optimization method (Chung et al., 2014). Focusing on the gating mechanism, many variants of RNNs

have been proposed to optimize gradient flow, such as MGUs with one gate (Zhou et al., 2016), GRUs

with two gates (Chung et al., 2014), and LSTMs with three gates (Hochreiter and Schmidhuber, 1997).

At every time step, the values of the gates, which are the coefficients of the weighted combination

of the previous states, control the length of temporal dependencies that can be addressed (Gu et al.,

2020).

The inner mechanism of gated RNNs varies. For example, the Long Short-Term Memory (LSTM; Hochre-

iter and Schmidhuber, 1997) has input, output, and forget gates to remember or forget information from

previous time steps. Another popular variant of gated RNNs is the Gated Recurrent Unit (GRU; Chung

et al., 2014), simplifying the LSTM architecture by merging input and forget gates into a single update

gate. Instead of sequential computing, Quasi-RNNs (QRNNs; Bradbury et al., 2017) use convolutions

and a minimalist recurrent pooling function, achieving significant speed-up over LSTMs.

Connections

The second direction focuses on the time steps in RNNs to alleviate gradients vanishing or exploding.

Such direction mainly intends to define or learn useful constraints that allow the network to skip

certain parts of the input sequence, which are not taken into account during training (Alpay, 2021).

Representative methods include skipping connections across multiple timestamps (Hihi and Bengio,

1995; Zhang et al., 2016) or designing multi-timescale layers (Koutnik et al., 2014; Chung et al., 2016).

For those interested in delving deeper into this field, we recommend the study by Alpay (2021).

To exemplify this research area, we briefly introduce the three relevant studies: NARX-RNNs (Lin et al.,

1996) introduce an additional set of recurrent connections with time lags of 2,3 · · · ,k time steps. The
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additional connections help to bridge long-time lags, but introduce two problems: NARX-RNNs are k

times slower than Vanilla-RNNs (per iteration) and have k times more parameters than Vanilla-RNNs

with the same number of hidden units. To overcome these problems, Sutskever and Hinton (2010) used

leaky integrators for every unit and parameter sharing in Temporal-Kernel RNNs (TKRNNs; Sutskever

and Hinton, 2010). Another attempt is Clockwork RNN (CW-RNN; Koutnik et al., 2014), which

partitions its hidden layer into separate modules, each processing inputs at its own temporal granularity,

making computations only at its prescribed clock rate.

Initializations

Rather than on model architecture, a major research direction focuses on optimizing parameter

initialization and maintenance to address gradient vanishing or exploding. Well-known methods

include identity projection (Talathi and Vartak, 2015), unitary or orthogonal matrices (Arjovsky et al.,

2016; Helfrich et al., 2018), and controlling the range of parameters (Li et al., 2018; Kanai et al.,

2017).

For example, the unitary evolution RNNs (uRNNs; Arjovsky et al., 2016) introduce unitary hidden-

to-hidden matrices, where eigenvalues are restricted to live on the unit circle. While this restriction

stabilizes the training process of RNNs considerably, it causes two problems (Orvieto et al., 2023):

smaller function approximation class and expensive training cost (since a projection on the Stiefel

manifold is required at each gradient step). To resolve the second issue, many works designed repa-

rameterization of the hidden-to-hidden matrix as the Givens rotations (Jing et al., 2017), Householder

reflections (Mhammedi et al., 2017), or as the exponentials of skew-symmetric matrices (Hyland and

Rätsch, 2017; Lezcano-Casado and Martınez-Rubio, 2019).

4.2.2 Design Space of Vanilla-RNNs

The recent advancement presented by Orvieto et al. (2023) holds significant importance for designing

TNLMs. Our exploration of their work is motivated by two compelling factors. Primarily, their
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recurrent model defies convention by embracing linearity, a departure from the prevailing belief that

RNNs should exhibit nonlinearity (Siegelmann, 2012; Pascanu et al., 2013; Erichson et al., 2020).

When tensor networks have been used to analyze the theoretical properties of neural networks (Cohen

and Shashua, 2016; Khrulkov et al., 2018; Levine et al., 2018), the validity of such analyses has always

been a point of contention. These doubts are due to the contradiction between the nonlinearity of neural

network models and the linearity of tensor networks. On the experimental side, the linearity within

tensor networks has presented challenges in training, a notion supported by our experimental findings

(see Sec. 6.3.1). Consequently, we shall investigate the impact of linearity on model effectiveness and

understand how Orvieto et al. (2023) overcame the hurdles stemming from this linearity.

Distinct from our earlier discussions on gating mechanisms or connections in Sec. 4.2.1, the innovation

in Orvieto et al. (2023)centered on the parameter initializations in the complex number domain. In

contrast, prior TNLMs have predominantly operated within the domain of real numbers (see Sec.

4.1.3, though tensor networks are naturally suited for complex numbers. Thus, the work of Orvieto

et al. (2023) allows us to use their theorems to parameterize tensors while preserving the underlying

architecture of tensor networks, as well as integrating complex numbers into the model (see Sec.

5.4).

In the following sections, we illustrate their insights into model development and theorem formulation.

We use their notations for consistency.

Background, Motivation and Research Objective

Deep state-space models (SSMs) have achieved SOTA performance on the Long Range Arena bench-

mark (LRA; Tay et al., 2020). These models are inspired by continuous-time linear SSMs, which is a

well-established component of modern control systems (Orvieto et al., 2023). Representative deep

SMMs include S4 (Gu, Goel, and Ré, 2022) and its variants: DSS (Gu, Goel, Gupta, et al., 2022),

S4D (Gupta et al., 2022), and S5 (Smith et al., 2023). SSMs offer a crucial advantage over Transformers

by addressing a limitation: the computational and memory costs of attention layers scale quadratically

as O(L2) with the sequence length L. SSMs and Vanilla-RNNs are superficially similar. Specifically,
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Figure 4.6 (Left) Deep Linear Recurrent Units (LRUs) architecture (Orvieto et al., 2023). The model is a
stack of 6 LRU blocks, with skip connections and batch/layer normalization (Ba et al., 2016; Ioffe and Szegedy,
2015). (Right) Summary of effects for the main steps to build LRUs, starting from RNNs-Tanh. Shown is the
average performance (3 seeds) of the recurrent module at each step on LRA tasks, compared with the average
performance of deep SSMs.

let [u1,u2, · · · ,uL] be a sequence of Hin-dimensional inputs. An RNN/SSM layer with H-dimensional

hidden state computes a sequence of Nout-dimensional outputs [y1,y2, · · · ,yL] through a recurrent

computation using learnable parameters A ∈ RH×H ,B ∈ RH×Nin ,C ∈ RNout×H ,D ∈ RNout×Nin:

xk = φ(Axk−1 +Buk), yk =Cxk +Duk, (4.6)

where several differences need to be emphasized: (1) Vanilla-RNNs include a nonlinear normalization

function, such as the softmax function, on the output yk = ψ(Cxk +Duk) with D = 0. Having D ̸= 0

basically introduces a skip connection in its architecture. (2) φ represents a nonlinearity function

in Vanilla-RNNs, such as the Tanh function. In contrast, the recurrence of SSMs is linear (i.e., φ is

the identity function). (3) Bias parameters are not denoted in Eq. 4.6 as they can be incorporated

into the MLP blocks following the RNN/SSM layer. (4) Compared with Vanilla-RNNs, A and B are

parameterized in a peculiar way in SSMs (e.g., Gu, Goel, and Ré, 2022).

Motivated by these similarities and differences, Orvieto et al. (2023) argued that it was unclear where

the effectiveness enhancement of deep SSMs boost over Vanilla-RNNs came from. Thus, they used

the same architecture as S4, DSS, and S5, but replaced the SSM layer in the recurrent core with an

RNN. Then, they studied which steps need to be taken to gradually retrieve S4-like effectiveness
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Table 4.3 The effect of removing the nonlinearity from the vanilla recurrent cell (see Eq. 4.6) on test accuracy.
The term RNN-LIN refers to the identity function φ . %denotes that the models did not exceed random guessing.

Cell sCIFAR LISTOPS TEXT RETRIEVAL PATHFINDER

RNN-RELU 69.7 (0.2) 37.6 (8.0) 88.0 (0.1) 88.5 (0.1) %

RNN-TANH 69.9 (0.3) 43.9 (0.1) 87.2 (0.1) 88.9 (0.2) %

RNN-LIN 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1) %

on LRA tasks, leading to the architecture presented in Fig. 4.6. Their main goal was to answer the

question: “Can we match the effectiveness and efficiency of deep continuous-time SSMs using deep

RNNs?” In other words, Orvieto et al. (2023) sought to demonstrate that Vanilla-RNNs can achieve

SOTA performance on LRA tasks when properly initialized and parameterized.

Orvieto et al. (2023) divided the development of their models into four main steps, each supported

by theoretical considerations and empirical observations. In the remainder of this section, we will

elaborate on the fundamental principles and discoveries underlying each step.

Linear Recurrences

Linear RNN outperformed nonlinear RNN variants in the same architecture, as depicted in Table 4.3.

These results were unexpected because recurrent nonlinearities were believed to be a key component

for the success of RNNs (Siegelmann, 2012; Pascanu et al., 2013; Erichson et al., 2020). For example,

single-layer sigmoidal and Tanh RNNs are Turing completeness, which cannot be achieved by the

linear variant (Chung and Siegelmann, 2021). In addition to experiment results, Orvieto et al. (2023)

leveraged a spectral analysis and Koopman operator theory (Koopman and Neumann, 1932), showing

that linear RNN layers with nonlinear feedforward blocks are sufficient to approximate highly nonlinear

systems.

With their empirical findings and theoretical analysis, Orvieto et al. (2023) claimed that the use of

linear recurrence in RNNs when coupled with nonlinear MPS does not harm the model expressivity. In

contrast, linearity recurrence empowers the ability to parallelize training and inference, as well as to
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control how quickly the gradients might vanish or explode directly. Thus, Orvieto et al. (2023) dropped

nonlinearities in the following steps.

Complex Diagonal Recurrent Matrices

Diagonalizing linear recurrences for computational efficiency has been a dominating feature of all

deep SSMs since the introduction of DSS. Correspondingly, Orvieto et al. (2023) unrolled the linear

recurrence xk = Axk−1 +Buk using the assumption that x−1 = 0 ∈ RH :

x0 = Bu0

x1 = ABu0 +Bu1

x2 = A2Bu0 +ABu1 +Bu2

...

xk =
k−1

∑
j=0

A jBuk− j. (4.7)

Then, Orvieto et al. (2023) decomposed the recurrence as A = PΛP−1, where P ∈ CH×H is an in-

vertible matrix and Λ = diag(λ1,λ2, · · · ,λH) ∈ CH×H . Note that the use of the complex field allows

representing non-symmetric matrices A in diagonal form. Next, Orvieto et al. (2023) plugged the

decomposition A = PΛP−1 into Eq. 4.7 and multiplied both sides by p−1:

x̄k =
k−1

∑
j=0

Λ
jB̄uk− j, (4.8)

where x̄k := P−1xk and B̄ := P−1B. Note that the output function in Eq. 4.6 is yk = Cxk + Duk.

Here, Orvieto et al. (2023) defined the output function as:

yk =R[C̄x̄k]+Duk, (4.9)

where C̄ :=CP−1 and R[·] denotes a vector consisting of the real part of the complex-valued vector

C̄x̄k. Thus, instead of learning (A,B,C,D), one can equivalently learn Λ, B̄,C̄,D, where Λ, B̄,C̄ are

complex valued, and Λ is a diagonal matrix.
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Figure 4.7 Eigenvalues of A ∈RH×H following Glorot initialization: each entry of A is sampled independently
from a Gaussian with mean 0 and variance 1/H (Orvieto et al., 2023). The eigenvalues are complex and are
represented on the complex plane. The black circle is the unit disk {|z|= 1} ⊆ C. The limit behavior (uniform
initialization) is predicted by Thm. 4.2.1.

Learning recurrent linear RNNs speed up training and inference. For example, computing the powers

of diagonal matrices Λ j is much easier than exponentiating hidden-to-hidden matrices A j. Meanwhile,

the linearity of recurrences allows the use of parallel scans algorithm (Martin and Cundy, 2017).

Moreover, the model is more effective on the sCIFAR and LISTOPS tasks, as demonstrated in the

second row of Table 4.4.

Initialization and Stable Exponential Parameterization

A stable initialization and parameterization are important to model performance. Orvieto et al. (2023)

mainly achieved this goal in three steps. As a first step, they kept the eigenvalues of the recurrence

unchanged when comparing Eq. 4.8 with Eq. 4.6, where A followed Glorot initialization (Glorot and

Bengio, 2010). They used a classical result from random matrix theory:

Theorem 4.2.1 (Ginibre, 1965; Strong circular law). Let µH be the empirical spectral measure of AH ,

where AH is a real H ×H matrix with i.i.d. Gaussian entries, each with zero mean and variance 1/H.

Then, µH converges weakly almost surely as H → ∞ to the uniform probability measure on |z| ≤ 1 ⊆C.

Supported by Thm. 4.2.1, Fig. 4.7 shows that the spectrum of non-symmetric A is sampled from the

unit disk in C under Glorot initialization. Thus, sampling the eigenvalues of Λ uniformly on the unit

disk is equivalent to the Glorot initialization of A. Using the definition of exponential of a complex
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number: exp(−ν + iθ) := e−ν(cos(θ)+ isin(θ)), Orvieto et al. (2023) parameterized the diagonal

matrix as:

Λ = diag(exp(−ν + iθ)), (4.10)

where ν ∈ RH and θ ∈ RH are the learnable parameters (instead of the real and imaginary parts of

Λ).
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rmin = 0.4, rmax = 0.9

Figure 4.8 Eigenvalues of a diagonal matrix A with
entries sampled using Lem. 4.2.1 (Orvieto et al., 2023).
For rmin = 0, rmax = 1, the distribution coincides with
Glorot initialization in the limit.

As the second step, Orvieto et al. (2023) kept the

norm of eigenvalues of Λ to be close to 1 (at least

at initialization). This step is important to avoid

quickly vanishing or exploding gradients (Gu,

Goel, Gupta, et al., 2022; Gupta et al., 2022).

Specifically, since x̄k = ∑
k−1
i=0 ΛiB̄uk−i in Eq. 4.8,

the norm of component j of x̄ at timestamp

k evolves such that |xk, j| = O(x̄k, j) = O(|λ j|k).

Therefore, a sufficient condition to ensure stabil-

ity (i.e., xk does not explode or vanish) is therefore |λ j|= 1,∀ j.

To achieve this goal, Orvieto et al. (2023) sampled λ j uniformly on an annulus in between circles with

radii rmin and rmax in C, as shown in Fig. 4.8:

Lemma 4.2.1 (Orvieto et al., 2023; Lem. 3.2). Let u1,u2 be independent uniform random variables

on the interval [0,1]. Let 0 ≤ rmin ≤ rmax ≤ 1. Compute ν = −1
2 log

(
u1(r2

max − r2
min)+ r2

min
)

and

θ = 2πu2. Then exp(−ν + iθ) is uniformly distributed on the annulus in C between circles of radii

rmin and rmax.

By setting rmin = 0 and rmax = 1, this exponential parameterization takes the effectiveness of PathFinder

above random chance (50%), as depicted in Table 4.4 (third row).
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Table 4.4 Test accuracy of a linear diagonal complex RNNs under different parametrizations of the transition
matrix (Orvieto et al., 2023). The term DENSE A denotes linear RNNs in Eq. 4.6. The term Λ REAL + IM denotes
the complex diagonal RNNs in Eq. 4.8. The term Λ EXP denotes the parameterization Λ = diag(exp(−ν + iθ))
with rmin = 0,rmax = 1 in Eq. 4.10. The term Λ STABLE EXP denotes Eq. 4.11. The term + RING INIT denotes a
changed initialization where rmin and rmax are tuned. %denotes that the models did not exceed random guessing.

Cell sCIFAR LISTOPS PATHFINDER Path-X

DENSE A 72.2 (0.2) 50.4 (0.2) % %

Λ REAL + IM 86.5 (0.1) 58.8 (0.3) % %

Λ EXP 85.4 (0.7) 60.5 (0.3) 65.4 (9.0) %

Λ STABLE EXP 87.2 (0.4) 59.4 (0.3) 93.5 (0.5) %

+ RING INIT 88.1 (0.0) 59.4 (0.3) 94.4 (0.3) %

As the third step, Orvieto et al. (2023) enforced numerical stability by reparameterizing Λ as:

Λ = diag
(

exp
(
−exp(ν log)+ iexp(θ log)

))
, (4.11)

where ν log,θ log ∈ RH are the learnable parameters (instead of the ν ,θ in Eq. 4.10), and ν log :=

log(ν),θ log := log(θ) at initialization. As listed in the fourth row of Table 4.4, this change drastically

improves the model effectiveness on Pathfinder. It seems that the transition from Eq. 4.10 to Eq.

4.11 is primarily driven by empirical considerations: (1) The power of exponential parameterization

makes training with Adam optimizer (Kingma and Ba, 2014) easier. (2) The exponential nonlinearity

can increase granularity around the eigenvalues |λ j|= 1, stabilizing the training process. (3) Orvieto

et al. (2023) interpreted ν log as the vector of log eigenvalue magnitudes, encoding the distance to the

origin, and θ log as the vector of log eigenvalue phases, representing the angle from the vector 1+0i.

Empirically, tuning the initialization range of ν log and θ log can improve model effectiveness, as shown

in Table 4.4 (last row). For example, for longer sequence lengths, tuning rmin and rmax or reducing the

initialization phase (i.e., tuning the range of θ log from [0,2π] to [0,π/50]) improved convergence on

the PathX task.

Normalization

Up to this point, Orvieto et al. (2023) still did not solve PathX—the hardest task among LRA tasks,

with a sequence length of 16k tokens (see Table 4.4). During training, they identified an issue
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that limε→0
E[∥xk→∞∥2

2]

E[||Bu||22]
= 1

1−r2 , where ε = r2
max − r2

min. To obtain this finding, they first compute the

magnitude of E[∥x∞∥2
2]:

Proposition 4.2.1 (Orvieto et al., 2023; Proposition 3.3). Let Λ be diagonal with eigenvalues sampled

uniformly on the annulus in C between circles of radii rmin < rmax < 1. Then, under constant or

white-noise input and Glorot input projection, the squared norm of the state xk converges as k → ∞ to

the following quantity.

E[∥xk→∞∥2
2] =

1
r2

max − r2
min

log
(

1− r2
min

1− r2
max

)
E[∥Bu∥2

2].

Let ε = r2
max − r2

min and ρ = 1− r2
max, Orvieto et al. (2023) found that:

lim
ε→0

E[∥x∞∥2
2]

E[∥Bu∥2
2]

= lim
ε→0

[
1
ε

log
(

1+
ε

ρ

)]
= lim

ε→0

[
1
ε

(
ε

ρ
+O(ε2)

)]
=

1
ρ
=

1
1− r2 . (4.12)

The magnitude of xk will explode if r is close to 1 according to Eq. 4.12. To mitigate this issue, Orvieto

et al. (2023) tended to normalize the hidden states during training. They considered the one-dimensional

setting under white-noise input: let Λ = λ ∈ C and B = 1:

E|xk|2 =
(

k−1

∑
i=0

λ
iE[uk−i]

)(
k−1

∑
j=0

λ
jE[uk− j]

)∗

=
k−1

∑
i, j=0

λ
i(λ j)∗E[uk−iuk− j]

=
k−1

∑
i=0

|λ |2i ∞→ 1
1−|λ |2 . (4.13)

where ∗ denotes conjugation. Therefore, Orvieto et al. (2023) used learnable parameter γ initialized

element-wisely as
√

1−|λ j|2. An interesting observation is that Orvieto et al. (2023) also tried to set

γ j =
√

1−|λ j|2 in each training iteration and found it to work similarly in practice to a trainable γ .
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With this final modification, the hidden states of Linear Recurrent Units (LRUs) are defined as (Orvieto

et al., 2023):

xk = diag(λ )xk−1 + γ ⊙Buk, (4.14)

where λ j = exp
(
−exp(ν log

j )+ iexp(θ log
j )
)

and γ j =
√

1−|λ j|2 at initilization. LRUs finally matched

the effectiveness and efficiency of deep SSMs on all LRA tasks, as shown in Fig. 4.6.

4.3 Limitations and Potential Improvements

This section is structured as follows: In Sec. 4.3.1, we discuss the limitations of long-range correlations

from the perspective of language modeling. In Sec. 4.3.2, we analyze why previous TNLMs have

not been tested on well-accepted NLP datasets and why there exists an effectiveness gap between

TNLMs and SOTA LMs. In Sec. 4.3.3, we share our thoughts on possible enhancements for TNLMs.

It should be noted that the content of this section is from the author’s perspective and may contain

inaccuracies.

4.3.1 Long-Range Correlations

The research objectives of Pestun and Vlassopoulos, 2017; Pestun et al., 2017 hinged on the definition

of long-range correlations (see Def. 4.1.2), which has twofold shortcomings.

Determining whether the correlation function C(S) follows a power decay is susceptible to itself and

experimental factors. (1) The correlation functions themselves may cause issues. Not all correlation

functions can precisely capture the long-range correlations that underlie language, even when such

phenomena are present (Tanaka-Ishii, 2021). Evidence of this is that the power-law type phenomenon

is sometimes better characterized by distribution families other than power laws (Clauset et al., 2009).

(2) This procedure involves fitting the parameter γ using an appropriate method, with the validation of

a goodness-of-fit test, such as the Kolmogorov-Smirnov test (Massey Jr, 1951). During this process,
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Table 4.5 Example of the datasets used in previous TNLMs. Column headings are as follows: "Paper" are
works that used tensor networks (see Table 4.1); "Dataset" refers to the training datasets used in the paper; |V |
denotes the vocabulary size; L denotes the maximum length of samples; and |T | denotes the number of training
samples. The notation "-" indicates that the vocabulary size in each position of the samples varies.

Paper Dataset |V | L |T |
Han et al.

(2018)
Bars and Stripes (MacKay and Mac Kay, 2003) 2 16 30
MNIST (LeCun et al., 1998) 2 784 1k

Miller et al.
(2021)

Tomita grammars (Tomita, 1982) 2 30 10k
Motzkin grammars (Alexander et al., 2021) 3 50 10k
Email addresses (Radev, 2008) 38 30 4k

Novikov et al.
(2021)

POWER (Dua and Graff, 2017) - 6 1659k
GAS (Fonollosa et al., 2015) - 8 852k
HEPMASS (Baldi et al., 2016) - 21 315k
MINIBOONE (Roe et al., 2005) - 43 29k
BSDS300 (Martin et al., 2001) - 63 1000k

the goodness-of-fit test could be affected by experimental factors, including the text type, text length,

and selected sequence length (see Fig. 4.1).

The second shortcoming is that Def. 4.1.2 has limited applicability to LMs. There are three reasons for

this statement. (1) We can view Def. 4.1.2 as a binary metric that states whether or not a text generated

by a model has long-range correlations. However, using a metric that indicates how much a model can

capture long-range correlations would be more natural for deep learning communities. (2) According

to Def. 4.1.2, we cannot conclude that if an LM generates text with power-law decay correlations, it can

always produce text that more closely resembles human language in every scenario. This uncertainty

is due to not all text written by humans having power-law decay correlations. For instance, a corpus

consisting of only 1k words may exhibit a different decay pattern of correlations than that of a corpus

containing billions of words. (3) It is unclear if better modeling of long-range correlations can improve

model effectiveness in long-context scenarios. No theoretical or empirical evidence exists to establish

this relationship. Deep learning communities typically employ "benchmarks" to ascertain whether

a model can perform effectively in long-context scenarios. For example, LMs have been frequently

tested on LRA tasks (Tay et al., 2020) regarding their long-range reasoning abilities (see Sec. 4.2.2).
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4.3.2 Effectiveness Gap

Prior TNLMs lacked comparisons with state-of-the-art (SOTA) LMs on well-accepted NLP datasets

(e.g., PTB; Marcinkiewicz, 1994). The reasons for this absence have yet to be explicitly described in

prior research. We attribute the absence to the properties of TNLMs, and this section analyzes two

possible contributing factors.

Computational and Memory Cost

One distinction between NLP datasets and those used to evaluate TNLMs is the size of their vocabu-

laries. TNLMs have only been evaluated on the datasets with small-scale vocabulary size (|V |< 38),

as exemplified in Table 4.5. On the other hand, NLP datasets tend to possess a larger vocabulary

size; for example, WikiText-2 (Merity et al., 2016) has a vocabulary size of 30k. Unexpectedly, our

observations indicate that modeling the joint probability of sequences with large-scale vocabulary

sizes is theoretically plausible for TNLMs. In other words, the vocabulary size does not impede prior

research applying TNLMs to NLP datasets.

To support this statement, we have two observations. (1) The increase in the vocabulary size will only

lead to a linear growth in the computation cost of Z in MPS. Recall that after representing the joint

probability of the sequence as a wave function x (see Eq. 4.3), previous TNLMs employ a particular

TN to represent x; otherwise, the computation cost of x is O(|V |L), which is intractable (see Sec. 3.2.1).

If the model architecture is based on MPS, the joint probability P̃(x) has the computation cost of

O(LR2) (Miller et al., 2021), and the normalization factor Z has the cost of O(|V |LR3) (Orús, 2014),

where R is the maximum TT-rank. (2) P̃(x) is the result of tensor contractions of TT-cores in the

TT-format (see Eq. 3.4); elements of TT-cores are learnable parameters. Thus, increasing large-scale

vocabulary sizes does not cause data underflow when computing P̃(x). Taking the two observations

together, we suggest that modeling datasets with large-scale vocabulary size is plausible for TNLMs.
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Mismatched Paradigm

We conjecture that the primary factor is the mismatch between the paradigm of TNLMs and neural

networks. We highlight that, unlike neural network LMs, TNLMs aim to learn the empirical distribution

defined by the training set in Sec. 4.1.4. Their training objective may cause TNLMs to underperform

neural network LMs on most NLP tasks. To support this claim, let us consider an example that a model

has fully learned the empirical distribution of the training set and can generate sequences that exactly

follow this distribution. However, the model will generalize poorly if the empirical distribution of the

training and test sets differs slightly. For example, it would encounter out-of-vocabulary problems

(i.e., the occurrence of words in the test set is absent in the training set). In contrast, neural network

models, such as the Transformers, demonstrate their generalization capabilities on the compositional

benchmarks (Ontanon et al., 2022). Behind the success of neural network models, predicting masked

words or the next word in a sentence during training should be a significant contributor. For instance,

this approach may encourage the LMs to acquire contextual information about words (Devlin et al.,

2018).

Learning the empirical distribution of sequences defined by the training set may only be suitable for

certain language modeling tasks. Such tasks require models to generate sequences that adhere strictly

to a predefined set of rules, and the training and test set must strictly obey these rules. In this way,

models may fully grasp the rigid rules from modeling the empirical distribution of the training set,

and be effective on the test set. For instance, Miller et al. (2021) trained their model on 4k email

addresses and evaluated its ability by generating addresses in the correct format. Additionally, they

used the model to generate sequences compliant with Tomita grammars (Tomita, 1982) or Motzkin

grammars (Alexander et al., 2021). Their model outperformed Transformers and LSTMs in these

tasks.

We speculate that the training objective of TNLMs should align with that of SOTA LMs, to achieve

SOTA effectiveness in language modeling. However, altering the training objectives necessitates a shift

in the paradigm for establishing TNLMs. In Ch. 5, we will introduce our innovations in this paradigm

shift.
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4.3.3 Potential Improvements

Besides the mismatched paradigm, we outline four possible directions for enhancing the effectiveness

of TNLMs in language modeling tasks. The first two directions will undergo evaluation in our

experimental assessments in Ch. 6. The latter two directions remain as prospects for future endeavors.

We explain the rationale behind our selection of these directions in the following paragraphs. Note that

these suggestions are conjectural and stem from preliminary observations, which should evolve with

further research and experiments.

Thoughtful parameterization of tensor networks. Effective parameterization and initialization strate-

gies can mitigate gradients vanishing or exploding, allowing models to efficiently and effectively

capture long-range dependencies (see Sec. 4.2). Just as careful parameterization and initializations

are vital for RNNs, similar attention must be directed toward TNs. For example, if we use tensor

trains, the parameterization of TT-cores demands careful consideration. In Ch. 6, we shall modify the

parametrization and initializations of LRUs for our models.

Treating tensor networks as layers. RNNs have been integrated as layers within models rather than

stand-alone entities, similar to the role of attention layers in Transformers. While challenging for

theoretical analysis, this approach substantially enhances model effectiveness. The current paradigm

of TNLMs, however, uses one type of TNs as the entire model architecture (see Sec. 4.1.3). Therefore,

we propose treating TNs as integral building blocks within neural architectures. While TNs inherently

exhibit linearity, their integration with nonlinear blocks can better capture complex patterns. In Ch. 6,

we shall try to use the S4 architectures and replace the RNN layers with our proposed models.

Diverse roles of tensor networks. The role of TNs within the broader architecture offers multiple

possibilities. This thesis focuses on using tensor trains as replacements for RNNs within a larger

structure. Alternatively, TNs could be integrated into other model components, such as word embedding

layers. Recent research has explored tensorized word embeddings, treating a word embedding as

a composite of morpheme vectors through tensor products (Gan et al., 2022). Thus, we could use
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TNs, such as TTNs or MERA (see Sec. 3.2.1), to encode linguistic hierarchies, enhancing context

comprehension. As this direction diverges from our current emphasis on tensor trains replacing RNNs,

we consider it as prospective future work.

Leveraging normalization functions. The normalization factor (i.e., Z) for joint probabilities is a

defining characteristic of TNLMs compared with neural network LMs, as outlined in Sec. 4.1.3.

However, its practical benefits remain largely unexplored, despite its theoretical significance. In

neural network models, various techniques such as layer/batch normalization (Ba et al., 2016; Ioffe

and Szegedy, 2015) are employed for normalization. Similarly, in LRUs (discussed in Sec. 4.2.2),

the introduction of the normalization factor γ significantly enhances model effectiveness. Therefore,

investigating the impact of Z on model effectiveness could be viewed as a research direction. Integrating

Z to manage input lengths within TNLMs could potentially mitigate challenges arising from longer

sequences, thereby enhancing generalization and robustness. However, given our model’s emphasis on

learning conditional probabilities (as introduced in Ch. 5), the integration of Z remains unclear. We

defer this aspect for further research.
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5
Language Modeling with Tensor

Trains

We organize this chapter as follows: Sec. 5.1 introduces our research objectives when devising tensor

network LMs. We propose a class of tensor-train LMs (TTLMs) in Sec. 5.2. We illustrate the

computation process of TTLMs and their relationship with earlier recurrent-based models in Sec. 5.3.

Last, we specify our attempts at developing an effective class of TTLMs in Sec. 5.4.

5.1 Research Objectives

Tensor networks have been widely used to analyze neural network models, including parameters com-

pression (Novikov et al., 2015), expressive power (Cohen et al., 2016; Khrulkov et al., 2018), and depth

efficiency for long-term memory (Levine et al., 2018). On the experimental side, despite arguments

about their potential advantage in capturing long-range correlations in human language (Pestun and

Vlassopoulos, 2017; Pestun et al., 2017), the effectiveness of tensor networks remains unverified (see

Sec. 4.1.2). In Ch. 4, we argue that the current paradigm of tensor network LMs diverges from that

of neural network LMs, primarily attributing the effectiveness gap. Specifically, tensor network LMs

typically learn the empirical frequency of training instances (see Sec. 4.3.2), but current neural network

LMs often learn to predict a single word in each instance (see Sec. 2.3.1 and Sec. 2.3.2).

Our research objective is to narrow the effectiveness gap between tensor networks and neural network

models in language modeling tasks. To achieve this goal, we introduce a class of tensor-train LMs

(i.e., TTLMs) in Sec. 5.2. TTLMs represent sequences in tensor space, encode joint probabilities as

wave functions, and employ tensor trains to learn conditional probabilities. Thus, TTLMs inherit the

fundamental properties of tensor networks, such as linearity and multiplicativity.
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However, TTLMs in its primary stage could not rival SOTA models. For instance, the initializations

and parametrizations of RNNs in long-range scenarios have been extensively studied, as discussed in

Sec. 4.2. Thus, our subsequent step is designing an effective class of TTLMs in long-range scenarios.

This exploration is detailed in Sec. 5.4.

5.2 Tensor Train Language Models

This section is structured as follows: In Sec. 5.2.1, we recap the notation and concepts of probability

distributions used throughout this thesis. In Sec. 5.2.2, we propose a class of tensor-train language

models (TTLMs), a model architecture that uses tensor trains to learn conditional probabilities of

sequences during training.

5.2.1 Notation and Basic Concepts

Before presenting TTLMs, we provide a concise reminder of the notation and terminology used

throughout this thesis. We refer to Ch. 3 for a detailed introduction to the notation, diagrams, and

tensor operations.

We denote a sequence of L ∈ N+ discrete random variables as X = [X (1),X (2), · · · ,X (L)], where each

X (i) ∈ V for all i ∈ [L] and V denotes the vocabulary set defined by a training set. The probability

distribution of X is denoted as P : V L → R[0,1]. Let x = [x(1),x(2), · · · ,x(L)] be a fixed-length sample

according to X. We use P(x) to represent the probability mass function that takes the value x, which is

short for P
(

X (1) = x(1),X (2) = x(2), · · · ,X (L) = x(L)
)

.

Let t ≤ L be a positive integer. We use x(1:t−1) as shorthand for the ordered list [x(1),x(2), · · · ,x(t−1)]

in x. We decompose the joint probability into conditional probabilities using the chain rule of proba-

bility (Bahl et al., 1983) as follows: P(x) = ∏
L
t=1 P(x(t)|x(1:t−1)), where P(x(t)|x(1:t−1)) is shorthand

for the conditional probability P(X (t) = x(t)|X (1:t−1) = x(1:t−1)). Note that the conditional probability

distribution of X (t) given X (1:t−1) = x(1:t−1) is denoted as Px(1:t−1) : V → R[0,1].
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The ground-truth labels for probability distributions vary across research fields. Density estimation

models typically assume that the ground-truth label for P is the empirical frequencies of X defined by

a training set (see Sec. 4.1.3). Neural network LMs often assume that the ground-truth label for Px(1:t−1)

is the one-hot vector representing x(t) (see Sec. 2.3.1). To differentiate the ground-truth labels from

those defined by a language model, we denote the probability distribution of X as P̃ and the conditional

probability distribution of X (t) given X (1:t−1) = x(1:t−1) as P̃x(1:t−1) .

5.2.2 Model Architecture.

TTLMs encode the joint probability distribution (i.e., P̃) into a quantum wave function. Measure-

ment will collapse P̃ and generate a fixed-length sample x = [x(1),x(2), · · · ,x(L)] with a probability

proportional to |Ψ(x)|2 as follows:

P̃(x) = ψ
(
|Ψ(x)|2

)
, (5.1)

where ψ is a normalization function that ensures the nonnegativity of P̃(x) and that the probabilities

sum to 1. For example, prior studies typically define ψ(|Ψ(x)|2) = |Ψ(x)|2
Z , where Z = ∑x∈V L |Ψ(x)|2

(see Sec. 4.1.3).

We then present two propositions, accompanied by their proofs, that demonstrate how TTLMs compute

the joint probability in Prop. 5.2.1, as well as the conditional probability distribution in Prop. 5.2.2.

Proposition 5.2.1. Let x = [x(1),x(2), · · · ,x(L)] be represented as Φ(x) in tensor space. Given a set of

tensors G(t) ∈ RRt−1×|V |×Rt (t ∈ [L], R0 = RL = 1), the Tensor Train Language Models compute the

probability of x as follows:

P̃(x) = ψ

(
(f(1))⊤G(1)(f(2))⊤G(2) · · ·(f(L))⊤G(L)

)
. (5.2)

63



Proof. We define the representation of x in tensor space. Given V = R|V | and the tensor space

V⊗L = V⊗·· ·⊗V︸ ︷︷ ︸
L

, a sample x according to X is represented as follows:

Φ(x) = f(x(1))⊗ f(x(2)) · · ·⊗ f(x(L))

=
L⊗

i=1

f(x(i)), (5.3)

where f ∈ V is one-hot encoding and Φ(x) ∈ V⊗L. For the sake of notation simplicity, we use f(i) to

denote f(x(i)) throughout the rest of the thesis.

Suppose A is a tensor of the same shape as Φ(x) in the tensor space V⊗L. We define the measurement

of Ψ(x) as:

|Ψ(x)|2 = ⟨A,Φ(x)⟩ (5.4)

=
|V |
∑

i1,i2,··· ,iL=1
Ai1,··· ,iL ·Φ(x)i1,··· ,iL ,

where ⟨·⟩ denotes the inner product of two same-sized tensors (see Def. 3.1.5). Note that TTLMs learn

P̃(x) by tuning the parameters of A during training. At this step, the computation and memory cost of

A is O(|V |L). Our next step is representing A in the TT-format.

Let a sequence of L ∈ N+ words denote as x = [x(1),x(2), · · · ,x(L)], where each x(i) ∈V for all i ∈ [L].

We denote the word indices in x as w1,w2, · · · ,wL, where wi ∈ [|V |]. The TT-format of Aw1w2···wL is

represented as follows (Oseledets, 2011):

Aw1w2...wL = G(1)
:,w1︸︷︷︸

1×R1

G(2)
:,w2,:︸ ︷︷ ︸

R1×R2

· · · G(L)
:,wL︸ ︷︷ ︸

RL−1×1

=
Rt

∑
α1,··· ,αL−1

G(1)
w1α1G(2)

α1w2α2 · · ·G
(L)
αL−1wL , (5.5)

where the tensors G(t) ∈ RRt−1×|V |×Rt (t = 1, · · · ,L, R0 = RL = 1 by definition) are called the TT-

cores, and Rk for k = 0, · · · ,L are called the TT-ranks (see Sec. 3.2.2 for a detailed introduction of

TT-decompositions).
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Since f(t) is a one-hot vector, we represent the elements of TT-cores in Eq. 5.5 as:

G(t)
wtαt−1αt =

|V |
∑
it=1

f (t)it G(t)
itαt−1αt

, (5.6)

where we permute the shape of G(t) from Rt−1 ×|V |×Rt in Eq. 5.5 to |V |×Rt−1 ×Rt in Eq. 5.6. We

refer to Sec. 3.1.2 for an explanation of the permutation operation.

Using Eq. 5.4, Eq. 5.5 and Eq. 5.6, we derive Eq. 5.2 from Eq. 5.1 as follows:

P̃(x) = ψ
(
|Ψ(x)|2

)
= ψ (⟨A,Φ(x)⟩)

= ψ (Aw1w2...wL)

= ψ

( |V |
∑

i1,··· ,iL=1

Rt

∑
α1,··· ,αL−1=1

f (1)i1 G(1)
i1α1

f (2)i2 Gα1i2α2 · · · f (L)iL G(L)
αL−1iL

)

= ψ

(
(f(1))⊤G(1)(f(2))⊤G(2) · · ·(f(L))⊤G(L)

)
.

Note that ⟨A,Φ(x)⟩=Aw1w2...wL because we define Φ(x) as the tensor product of one-hot vectors in

Eq. 5.3. Thus, the inner product yields a single nonzero element Aw1w2...wL .
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Figure 5.1 Example of Recursive calculation of con-
ditional probability in TTLMs. According to Eq. 5.9,
the conditional probability distribution of word x(4) is
computed as: P̃x(1:3) = ψ((h(3))⊤G(4)).

An essential property of Prop. 5.2.1 is that it nat-

urally combines the learnable parameters A and

input data Φ(x) together, thereby defining a ba-

sic model architecture to compute P̃(x) in the

TT-format. However, as discussed in Sec. 4.3.2,

previous tensor network LMs typically use the

empirical frequency of x defined by a training set

as the ground-truth label for P̃(x). In contrast,

current neural network LMs often learn to predict

a single word in x (see Sec. 2.3.1 and Sec. 2.3.2).
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To align with the paradigm of neural network LMs, we leverage the recursive property of TTLMs and

devise the models to learn the conditional probability distributions during training, in Prop. 5.2.2. We

provide an example of a recursive calculation of conditional probability in Fig. 5.1.

Proposition 5.2.2. Let x = [x(1),x(2), · · · ,x(L)] be represented as Φ(x) in tensor space, and the time

step index t ∈ [L] be the number of iterations when recursively unfolding A to obtain G(t) during the

TT-decomposition given Thm. 3.2.1. Given a set of tensors G(t) ∈RRt−1×|V |×Rt (t ∈ [L], R0 = RL = 1),

the conditional probability distribution of X (t) given X (1:t−1) = x(1:t−1) in the Tensor Train Language

Models satisfies:

P̃x(1:t−1) = ψ

(
(f(1))⊤G(1)(f(2))⊤G(2) · · ·(f(t−1))⊤G(t−1)G(t)

)
. (5.7)

Proof. When recursively unfolding the calculation of TTLMs in Prop. 5.2.1, G(t) has two sources of

“input”: the information from the previous recursive unfolding and input data f(t) (see Eq. 5.12 for a

detailed explanation of this recursive property).

From this perspective, G(t) acts as a bilinear map G(t) : R|V |×RRt−1 →RRt . We regard the information

in the previous step as a hidden state h(t), given by:

h(t) = (h(t−1))⊤G(t)f(t), (5.8)

where f(t), G(t), and h(t−1) are contracted and the indices of G(t) are permuted from RRt−1×|V |×Rt to

RRt−1×Rt×|V | .

We decompose P̃(x) into conditional probabilities using the chain rule (Bahl et al., 1983) as P̃(x) =

∏
L
t=1 P̃(x(t)|x(1:t−1)). The conditional probability distributions in TTLMs are defined as follows:

P̃x(1:t−1) = ψ

(
(h(t−1))⊤G(t)

)
, (5.9)
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where G(t) ∈R|V |×Rt−1 is the last TT-core in TT-format at time t. Note that Eq. 5.9 can be derived from

Eq. 5.4, if we unfold its h(t−1):

P̃x(1:t−1) = ψ

(
⟨A(1:t)),Φ(x(1:t−1))⟩t−1

)
(5.10)

= ψ

(f(1))⊤G(1)(f(2))⊤G(2) · · ·(f(t−1))⊤G(t−1)︸ ︷︷ ︸
h(t−1)

G(t)

 ,

where ⟨·⟩t−1 denotes the "generalized inner product" (see Def. 3.1.6); A(1:t) ∈ V⊗t ; and Φ(x(1:t−1)) =
t−1⊗
i=1

f(x(i)) ∈ V⊗t−1; ψ is a normalization function that ensures that P̃x(1:t−1) is nonnegative and that

the conditional probabilities sum to 1. Note that ψ in Eq. 5.9 differs from that of Eq. 5.1. Although

both functions ensure nonnegative elements summing up to 1, their choices differ. (1) In Eq. 5.1,

ψ normalizes the joint probability and is commonly defined as ψ(|Ψ(x)|2) = |Ψ(X)|2
Z , where Z =

∑x∈V L |Ψ(x)|2 according to prior research (see Sec. 4.1.3). At this stage, the nonlinearity of ψ

should not affect the linearity of tensor trains. (2) In Eq. 5.9, ψ is used to normalize the conditional

probabilities. For the use of TTLMs as a component in a larger architecture, ψ can be chosen as a

constant scaling function to preserve linearity; for stand-alone use of TTLMs, ψ can be chosen to be any

appropriate activation function—in the remainder of the thesis, we use the softmax function (Bridle,

1990).

The similarities and differences between the two propositions are concluded as follows: (1) Prop.

5.2.1 defines how TTLMs calculate the probability of an instance x during training and inference.

(2) Prop. 5.2.2 shows how TTLMs compute the conditional probability distribution of X (t) given

X (1:t−1) = x(1:t−1). (3) Both propositions represent x in the tensor space V⊗L and encode the probability

distribution of x into a wave function.
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5.3 Worked Computations and Relation to Previous

Models

In this section, we aim to assist readers in understanding TTLM: Sec. 5.3.1 presents an illustrative

example of the computation of TTLMs. Sec. 5.3.2 explains TTLM’s relation to previous models. This

section serves pedagogical purposes; readers interested in effective TTLM variants can skip it.

5.3.1 Example of Computation in TTLMs

This section illustrates TTLM’s calculation of the probability of x = [x(1),x(2), · · · ,x(L)] in Eq. 5.2, in

order to help readers understand the roles of TT-cores.

For pedagogical reasons, we make the following assumptions: (1) We adopt the convention of

considering a special class of tensor trains (Khrulkov et al., 2018; Miller et al., 2021), where all

intermediate TT-cores are equal to each other, denoted as G = G(2), . . . ,G(t−1) ∈ RR×|V |×R (which

suggests that all TT-ranks equal to R). (2) We assume that f(x(1)) is a one-hot vector, with f (x(1))1 = 1

and all other elements being 0. This setup allows us to clearly show the first part of Eq. 5.2. For the

sake of simplicity in notation, we use f(t) to represent f(x(t)); and f (t)i represents the ith component of

f(t) where i ∈ [|V |].
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The computation of Eq. 5.2 at time t is composed of three parts. The first part is f(1)
⊤

G(1), which is

computed as follows:

f(1)
⊤

G(1) =
[

f (1)1 , f (1)2 , . . . f (1)|V |

]


G(1)
11 G(1)

12 . . . G(1)
1R

G(1)
21 G(1)

22 . . . G(1)
2R

. . . . . . . . . . . .

G(1)
|V |1 G(1)

|V |2 . . . G(1)
|V |R


=
[
G(1)

11 ,G
(1)
12 , · · · ,G

(1)
1R

]⊤
= h(1),

where G(1) ∈ R|V |×R and h(1) ∈ RR. Note that we set f (1)1 = 1 while f (1)i = 0, ∀i ∈ {2, · · · , |V |}.

The second part of Eq. 5.2 is the intermediate states: (f(i−1))⊤Gh(i) where i ∈ {2,3, · · · , t −1} defined

in Eq. 5.8. For example, h(2) is computed as follows:

h(2) = (h(1))⊤Gf(2),

where the indices of G are permuted from RR×|V |×R to RR×R×|V |. Note that the intermediate TT-cores

G are third-order tensors, unlike the matrices G(1) and G(t).
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The last part of Eq. 5.2 outputs P̃x(1:t−1) at time t, which is defined in Eq. 5.9 as follows:

P̃x(1:t−1) = ψ

(
(h(t−1))⊤G(t)

)

= ψ


[
h(t−1)

1 ,h(t−1)
2 ,h(t−1)

R

]


G(t)
11 G(t)

12 . . . G(t)
1R

G(t)
21 G(t)

22 . . . G(t)
2R

. . . . . . . . . . . .

G(t)
|V |1 G(t)

|V |2 . . . G(t)
|V |R





= ψ




∑

R
i=1 G(t)

i1 h(t−1)
1

∑
R
i=1 G(t)

i2 h(t−1)
2

. . .

∑
R
i=1 G(t)

iR h(t−1)
R




.

Observing the calculation, G(1), G and G(t) theoretically have no parameters in common. Furthermore,

their roles in TTLMs are different: G(1) is an input-to-hidden matrix for words at the first position in

the sequence X; Intermediate TT-cores deal with two sources of information (i.e., previous hidden

states and input data); and G(t) is a hidden-to-output matrix, extracting the evidence provided in h(t−1)

and generates a probability distribution over vocabulary. (2) The equivalence between Eq. 5.7 and Eq.

5.10 assumes that the hidden-to-output matrix is always the last TT-core, instead of other TT-cores. In

other words, we shall always use the last TT-core as the hidden-to-output matrix during training, to

satisfy the definition of TTLMs.

5.3.2 Relation to Previous Models

This section illustrates the relationship between TTLMs and previous models.

TTLMs and tensor network LMs share the similarity of representing the joint probability of sequences

as wave functions with a normalization factor ψ . The key advantage of TTLMs over previous tensor

network LMs lies in their training paradigm. We argue that LMs should predict individual words

in a sequence rather than learning the empirical frequency of sequences in a training set (see Sec.

4.3.2). To achieve this, we leverage the recursive property of tensor trains, devising TTLMs to learn the
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conditional probability of sequences. This paradigm shift allows us to use "teacher forcing" (Marcus,

1998) to learn the parameters of TT-cores. By adopting this training approach, our model is expected

to achieve improved effectiveness on natural language datasets.

TTLMs and RNNs exhibit both similarities and differences. (1) As for differences, the dimensions of

hidden states are typically fixed in RNNs, and a shared hidden-to-hidden matrix is used. In contrast,

TTLMs have varying intermediate TT-cores: more parameters and potentially higher expressivity in

the model. More important, RNNs do not represent sequences in tensor space and theoretically lack a

normalization factor for the joint probability distribution. (2) Regarding similarities, we argue that

some RNNs could be seen as a special case of TTLMs. We will clarify TTLM’s relations to certain

RNNs in this section, including Second-order RNNs (Lee et al., 1986; Giles et al., 1989; Maupomé

and Meurs, 2020), Recurrent Arithmetic Circuits (Levine et al., 2018), and Multiplicative Integration

RNNs (Wu et al., 2016).

Let us consider a class of TTLMs that all intermediate TT-cores are equal to each other, denoted

as G = G(2), . . . ,G(t−1) ∈ RR×|V |×R, following the convention of Khrulkov et al. (2018) and Miller

et al. (2021). To simplify notation across different models, we use the following representations: f(t)

as the one-hot vector of the word x(t), h(t) ∈ RR for the vector of hidden states, A ∈ RR×R for the

hidden-to-hidden matrix, B ∈ RR×|V | for the input-to-hidden matrix, and φ(·) as an element-wise

nonlinear activation function.

Relation to Second-order RNN

Second-order RNNs (2-RNNs) use a third-order tensor, T, to combine hidden states and input data in

a multiplicative manner (Lee et al., 1986; Giles et al., 1989; Maupomé and Meurs, 2020). The i-th

coordinate of the hidden states in 2-RNNs is defined as follows:

h(t)i = φ

(
(h(t−1))⊤T:,i,:(f(t))+b

)
, (5.11)

where T:,i,: ∈ RR×|V | is the ith slice of tensor T ∈ RR×R×|V |, and b is a bias vector. For simplicity, we

will ignore b for other variants of RNNs since b can be seen as 0th component of f(x(t)) that equals
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to 1. Rabusseau et al. (2019) have shown that tensor trains can generalize linear 2-RNNs. We here

illustrate this equivalent using the recursive property of TTLMs.

Claim 5.3.1. The third-order tensor T in 2-RNNs equals the TT-cores in TTLMs. There is a nonlinear

activation φ such that the hidden states of 2-RNNs are identical to that of TTLMs when they are

accompanied by φ .

Proof. The proof is based on the following observation: We recursively unfold the calculation of

TTLMs in Eq. 5.2:

P̃(x) = ψ

( |V |
∑

i1=1
f (1)i1 G(1)

i1α1
· · ·
)

= ψ

( |V |
∑

i1,i2=1

R

∑
α1=1

f (1)i1 G(1)
i1α1

f (2)i2 Gα1i2α2 · · ·
)

...

= ψ

( |V |
∑

i1,··· ,iL=1

R

∑
α1,··· ,αL−1=1

f (1)i1 G(1)
i1α1

f (2)i2 Gα1i2α2 · · · f (L)iL G(L)
αL−1iL

)
, (5.12)

Observe in the above, we find that G has two sources of ”input” at each time step: the information

from the previous recursive unfolding (e.g., in the second line, the first line is the previous information)

and input data f(t).

From this perspective, G acts as a bilinear map G : R|V |×RR → RR. We can regard the information in

the previous line as a hidden state, given by:

h(t)αt =
|V |
∑
it=1

R

∑
αt=1

h(t−1)
αt−1 Gαt−1αt it f (t)it , (5.13)

where we permute the indices of Gαt−1itαt as Gαtαt−1it .
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Figure 5.2 Hidden states of 2-RNNs, RACs, and MI-RNNs, draw from the perspective of TTLMs. The dashed
line in the square denotes A,Φ(x) or G. The small hollow circles denote nonlinear activations.

After representing the hidden states in TTLMs, we can also represent the hidden states in 2-RNNs

shown by Eq. 5.11 in an element-wise fashion:

h(t)i = φ

(
(h(t−1))⊤T:,i:,:f(t)

)
= φ

( |V |
∑
j=1

R

∑
k=1

h(t−1)
j T jik f (t)k

)
, (5.14)

where j,k are the dummy indices as it ,αt . Thus, T ∈ RR×R×|V | and G ∈ RR×|V |×R are two same-sized

bi-linear maps.

After demonstrating that the third-order tensor (i.e., T) in 2-RNNs equals the TT-cores (i.e., G), the

only difference between the hidden states in Eq. 5.14 and Eq. 5.13 is the nonlinear activation φ . If we

add φ for h(t) in TTLMs, the hidden states of 2-RNNs and TTLMs are identical, as shown in Fig. 5.2a.

Relation to RACs and MI-RNNs

Multiplicative Integration (MI) connects two sources of inputs by the Hadamard product ‘⊙’. MI has

been used in RACs, Multiplicative RNNs (Sutskever et al., 2011) and MI-RNN (Wu et al., 2016):

Recurrent Arithmetic Circuits (RACs; Levine et al., 2018). The hidden states of RACs are defined as:

h(t) = Ah(t−1)⊙Bf(t), (5.15)
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where these hidden states are also used as an intermediate term in M-RNNs.

Multiplicative Integration RNNs (MI-RNNs; Wu et al., 2016). The hidden states of MI-RNNs are defined

as:

h(t) = φ(Ah(t−1)⊙Bf(t)). (5.16)

Claim 5.3.2. Given the condition the TT-scores: G = A⊙B. The hidden states of RACs are identical

to that of TTLMs. There is a nonlinear function φ such that the hidden states of MI-RNNs are identical

to that of TTLMs if they are accompanied by φ .

Proof. The proof is based on the following observation: In the language of tensor contractions, Eq.

5.15 involves contracting the input weights matrix B with the input vector f(x(t)), and contracting the

hidden weights matrix A with h(t−1). The Hadamard product of the two is a third-order diagonal tensor

δ ∈ RR×R×R such that δi jk = 1 iff the i = j = k, and δi jk = 0 otherwise. Thus, we can write Eq. 5.15

in element-wise fashion:

h(t)αt =
|V |
∑
it=1

R

∑
αt=1

A jαt−1h(t−1)
αt−1 δ jαtkBkit f (t)it

=
|V |
∑
it=1

R

∑
αt=1

h(t−1)
αt−1 Gαt−1αt it f (t)it , (5.17)

where G = A⊙B. In this case, the hidden state of TTLMs in Eq. 5.13 equals that of RACs in Eq. 5.17,

as shown in Fig. 5.2b. Similarly, if Eq. 5.13 is accompanied by a nonlinear activation φ , Eq. 5.13 is

equal to the hidden state of MI-RNNs in Eq. 5.16, as shown in Fig. 5.2c.

Given Claim 5.3.1 and 5.3.2, the three models should be simulated by TTLMs with a nonlinear

activation. We leave theoretical proof of this simulation to future work.
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5.4 TTLMs Variant: Linear and Multiplicative Models

Up to this point, we have presented the overall architecture of TTLMs and discussed their recursive

property to compute conditional probabilities. Empirically, we have assessed the impact of fundamental

properties of tensor networks—linearity and multiplicativity—on model effectiveness, in Sec. 6.3.

In essence, the gradients of hidden states easily vanish or explode because of the exponentiation of

A⊤diag
(

Bf(t)
)

(see Eq. 6.8). More important, hidden states of TTLMs exhibit exponential decay at

each training step. For instance, with a sequence length of 784, values extend beyond data presentations

at early recurrent steps. These dual issues substantially limit model effectiveness.

Thus, we attempt to devise an effective class of TTLMs that could address the aforementioned

issues. We focus on the simplest TTLM variant, known as RACs (Levine et al., 2018), with TT-cores

G = A⊙B (see Claim. 5.3.2). Let [x(1),x(2), · · · ,x(L)] be a sequence of N-dimensional inputs. A RAC

layer with H-dimensional hidden states is defined as:

h(t) = Ah(t−1)⊙Bx(t), (5.18)

where h(t) ∈RH is the vector of hidden states, A∈RH×H is the hidden-to-hidden matrix, and B∈RN×H

is the input-to-hidden matrix.

We categorize our efforts to enhance model effectiveness into the following two sections. (1) When

dealing with a new batch of sequences, the model initializes parameters according to its parameteriza-

tion and initialization schemes at the outset. Therefore, in order to aid the model in learning the initial

part of the sequences, we explore the parameterization and initialization scheme in Sec. 5.4.1. (2) As

sequence length increases, the impact of parameterization and initialization diminishes in handling the

latter part of sequences. Hence, we need a technique capable of maintaining stability and improving

the computation of Eq. 5.18 throughout the entire process. We term techniques for this stage as the

normalization, and discuss them in Sec. 5.4.2.
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5.4.1 Parameterization and Initialization

Our initial step involves diagonalizing A, which offers two key advantages: First, compared with a

matrix with most non-zero elements (i.e., an dense matrix), eigenvalues of A can be easier managed

to address challenges arising from exponentiations. Second, taking powers of diagonal matrices is

faster than exponentiating dense matrices. We leverage a spectral analysis: up to an arbitrarily small

perturbation of the entries, every matrix A is diagonalizable (Axler, 1997). Thus, one can write

A = PΛΛΛP−1, where P ∈CH×H is an invertible matrix and ΛΛΛ = diag(λ1,λ2, · · · ,λH) ∈CH×H . Plugging

the decomposition A = PΛΛΛP−1 into Eq. 5.18 and multiplying both sides by P−1,

h̄(t) =ΛΛΛh̄(t−1)⊙Bx(t), (5.19)

where h̄(t) = P−1h(t) ∈CH . In the following equations, we rename h̄(t) back to h(t) for convenience. It

is important to note that, unlike the symmetric setting where eigenvalues and eigenvectors are real, one

has to allow for complex entries to achieve full equivalence in the non-symmetric case. Furthermore,

in order to circumvent matrix multiplication and easier control the magnitude of the h over time, we

diagonalize B = VΓΓΓV−1 and replace B with its diagonal matrix ΓΓΓ = diag(γ1,γ2, · · · ,γH) ∈ CH×H :

h(t) =ΛΛΛh(t−1)⊙ΓΓΓx(t), (5.20)

where we assume H = N for simplicity (i.e., B ∈ RH×H and x(t) ∈ CH). Future work could explore

singular value decomposition (Klema and Laub, 1980) and non-square diagonal matrices ΓΓΓ to enhance

model effectiveness.

Our second step focuses on Glorot initialization (Glorot and Bengio, 2010). The issue of vanishing

and exploding gradients pertains to the initialization of neural networks (Vorontsov et al., 2017).

According to Thm. 4.2.1 introduced by Ginibre (1965), when each entry of a non-symmetric matrix is

independently sampled from a Gaussian distribution with mean 0 and variance 1/N, its eigenvalues

are distributed across the complex unit plane. Thus, if we parameterize the entries of ΛΛΛ and ΓΓΓ in

the complex unit plane, this indicates that the learnable parameters in Eq. 5.20 essentially are the

76



eigenvalues of both A and B under Glorot initialization. To achieve this goal, let us first parameterize

ΛΛΛ and ΓΓΓ as follows:

ΛΛΛ = diag(exp(−νννΛ + iθθθ Λ))

ΓΓΓ = diag(exp(−νννΓ + iθθθ Γ)), (5.21)

where νννΛ,θθθ Λ,νννΓ,θθθ Γ ∈ CH are the learnable parameters. Then, to ensure that the entries of ΛΛΛ and

ΓΓΓ are sampled uniformly on the unit disk, we use Lem. 4.2.1 introduced by Orvieto et al. (2023).

Specifically, we initialize each tuple (ννν ,θθθ) as follows (omitted subscripts for clarity): Let u1,u2 be

independent uniform random variables on the interval [0,1]. Let 0 ≤ rmin ≤ rmax ≤ 1 . Then, compute

ννν =−1
2 log

(
u1(r2

max − r2
min)+ r2

min
)

and θθθ = 2πu2. In this way, exp(−ννν + iθθθ) is uniformly distributed

on the annulus in C between circles of radii rmin and rmax (see Fig. 4.8).

Therefore, instead of learning A and B, LMMs learn νννΛ,θθθ Λ,νννΓ,θθθ Γ during training . The number of

training parameters decreases from two dense matrices (i.e., 2H2) to four vectors (i.e., 4H). More

important, this parameterization removes dense matrix multiplications in Eq. 5.18 (cf. Eq. 5.20),

enabling us to control the exponential growth of hidden states more easily. We term the model defined

by Eq. 5.20 and Eq. 5.21 as the Linear Multiplicative Models (LMMs). We shall explore possible

normalization techniques for LMMs in the following section.

5.4.2 Normalization

The component j ∈ [N] of h(t) at timestamp t ∈ [L] according to Eq. 5.20 evolves such that:

h(t)j = (λ jγ j)
t

t

∏
i=1

x(i)j , (5.22)

where we assume that h(0) = 1. Because of Glorot initialization and the norm of λ j,γ j and x(i)j being

less than 1, Eq.5.22 clearly shows the exponential growth of hidden states in LMMs. To counteract this

exponential behavior, we introduce three strategies to normalize Eq. 5.20 in the subsequent sections.
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These strategies each bring distinct benefits but also inherent limitations, which are assessed and further

explained in Sec. 6.4.2.

LMM-MLP. One approach involves adding trainable parameters to learn to counteract the exponential

decay of hidden states in Eq. 5.20 during recurrent steps. To achieve this goal, we introduce a

multi-layer perceptron to Eq. 5.20 and call it the LMM-MLP, with its hidden states at time t defined

as:

h(t) = MLP
(

ΛΛΛh(t−1)⊙ΓΓΓx(t)
)
, (5.23)

where MLP(z) =Cz+Dx(t) and C∈CH×H ,D∈CH×H are learnable parameters. From the perspective

of tensor networks, a notable drawback of LMM-MLP is its disruption of multiplicativity. If we intend

to leverage a linear and multiplicative model for theoretical analysis, it might be necessary to avoid

employing LMM-MLP.

LMM-MMn. Another straightforward approach involves applying an activation to Eq. 5.20 that

can rescale the hidden states within a pre-defined boundary during each recurrent step, as well as

maintaining the inherent relationships within the original data. A paradox, however, arises due to the

inherent linearity of tensor networks, while the commonly used activation functions, such as ReLU

(Agarap, 2018), are nonlinear. Here, to preserve the linearity, we opt for the widely adopted linear

transformation method known as Min-Max normalization (MMn; Sahu, 2015). Within MMn, we term

the model as LMM-MMn, with its hidden states at time t defined as:

h(t) = MMn
(

ΛΛΛh(t−1)⊙ΓΓΓx(t)
)
, (5.24)

where MMn(z) = a+ (z−min(z))(b−a)
max(z)−min(z) ∈ RH

[a,b] and a,b are the min-max boundary values. For example,

by setting a =−1 and b = 1, the components of h(t) will be rescaled to [−1,1] during each recurrent

step.

In Sec. 6.4, we will evaluate the effectiveness of LMMs, LMM-MLP, and LMM-MMn.
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6
Experimental Evaluation

This chapter is organized as follows: Sec. 6.1 introduces our experimental objectives. Second, Sec. 6.2

outlines the experimental setup. Third, Sec. 6.3 investigates the impact of two fundamental properties

of tensor networks—linearity and multiplicativity—on model effectiveness. Last, Sec. 6.4 evaluates

the impact of introducing complex numbers and the effectiveness of our proposed TTLM variants.

6.1 Objectives of the Experiments

One of our research objectives is to narrow the performance gap between tensor network LMs and

neural network LMs in long-range scenarios (see Sec. 5.1). In Ch. 4, we identify this gap mainly

stemming from a training paradigm mismatch. To address this, we propose a class of tensor-train

LMs (TTLMs) in Ch. 5. TTLMs represent sequences in tensor space, encode joint probabilities

as wavefunctions, and employ tensor trains for learning conditional probabilities. It inherits two

fundamental properties—linearity and multiplicativity—from tensor networks.

While these two properties offer theoretical advantages, they also present training challenges. On

the theoretical side, prior work used tensor networks to analyze neural network models, including

parameters compression (Novikov et al., 2015), expressive power (Cohen et al., 2016; Khrulkov et al.,

2018), and depth efficiency for long-term memory (Levine et al., 2018). However, on the pragmatic

side, the effectiveness of linear models is limited; for instance, nonlinearities in RNNs are believed to

be crucial for their success (Siegelmann, 2012; Pascanu et al., 2013; Erichson et al., 2020). Moreover,

most recurrent models use an additive operator, not a multiplicative one. Despite Wu et al. (2016)

arguing the benefits of multiplicative integration, they incorporated additive operations in multiplicative

integration (see Sec. 6.3.2).
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Thus, our core objective in this chapter is to assess the impact of linearity and multiplicativity on

model effectiveness. Accompanied by experiments and statistical methods, we delve into challenges

stemming from linearity, pinpoint environments conducive to training linear recurrent models, and

dissect the contributions of individual model components to the training process. Furthermore, we

uncover distinct training challenges posed by multiplicativity, highlighting differences from those

posed by linearity. This objective yields two benefits. (1) Prior work, exemplified by Khrulkov et al.

(2018), argued a link between RNNs and Tensor-Train decompositions, using tensor trains to prove the

expressivity for RNNs. Nonetheless, their theories lacked comprehensive empirical validation. Our

experiments will uncover the specific effects arising from linearity and multiplicativity during training,

shedding light on aspects that may have been overlooked. (2) These insights will provide a deeper

understanding of the challenges of applying tensor networks in long-range scenarios. This will offer

valuable guidance to researchers developing performant tensor network LMs.

Following analyzing these properties, we take a further step toward enhancing the effectiveness of

tensor network LMs. As we have devised TTLMs in Sec. 5.4, we shall assess their effectiveness in Sec.

6.4.

6.2 Experimental Setup

This section provides a detailed description of our experimental setup. We present the tasks, datasets,

and metrics in Sec. 6.2.1. We briefly introduce the baselines used in each task in Sec. 6.2.2. Sec. 6.2.3

outlines the model architecture used in the experiments. Last, Sec. 6.2.4 lists the model hyperparame-

ters.

6.2.1 Tasks, Datasets, and Metrics

To examine model effectiveness in long-range scenarios, we focus on two specific challenges: (i)

classification problems designed to test sequence models and (ii) language modeling datasets with
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Table 6.1 Table of datasets used in this thesis. L denotes the maximum length of the samples in each task. |T |
denotes the number of training examples.

Task Dataset |V | |T | L Epochs

Classification

sMNIST 256 54k 784 100
sCIFAR 256 45k 1024 200

LISTOPS 18 96k 2,048 100
TEXT 135 25k 4,096 100
RETRIEVAL 98 147k 4k 100
PATHFINDER 2 480k 1,024 100
PATH-X 2 480k 16,384 100

Language modeling WikiText-2 50264 48k 1024 200

increasing segment length. Their relevance and importance for our experiments will be clarified in

subsequent sections. Table 6.1 shows an overview of the tasks and datasets used in the chapter.

Classification

Pixel-level image classification. In this task, the model learns to classify images by processing the

image pixels sequentially; the pixels are read one at a time in scanline order, starting from the

top left corner and ending at the bottom right corner. The model predicts the image category only

after observing all pixels. We evaluate models on the MNIST (LeCun et al., 1998) and CIFAR-10

datasets (Krizhevsky, Hinton, et al., 2009), containing images with 784 and 1024 pixels, respectively.

Both datasets have 10 image categories. Prior research used the two datasets to test whether models

can capture long-term temporal dependencies, as the model has long time steps (i.e., 784 or 1024). For

instance, the sequential MNIST (sMNIST) has been used in Le et al. (2015) and Arjovsky et al. (2016),

and the sequential CIFAR (sCIFAR) has been employed in Gu, Goel, and Ré (2022) and Orvieto et al.

(2023). We use the two datasets to analyze the linearity and multiplicativity of models in Sec. 6.3.

Long Range Arena (LRA; Tay et al., 2020). LRA consists of 6 challenging classification tasks with

varying lengths of 1K-16K steps. These tasks involve diverse modalities and objectives, demanding

similarity, structural, and visuospatial reasoning. This benchmark is more difficult than the pixel-level

image classification task. For instance, in the Path-X task, with images containing 16K pixels, many
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models do not perform better than random guessing (Tay et al., 2020). Thus, LRA tasks serve as a

popular option to assess the long-range modeling capabilities of SOTA models (Gu, Goel, and Ré,

2022; Dao et al., 2022; Orvieto et al., 2023). We will not use the image task in LRA, as it is the

gray-scaled (single channel) version of sCIFAR. We shall compare our proposed models with SOTA

models on the remaining five tasks in Sec. 6.4, provided that our models demonstrate competitive

performance on the sMNIST and sCIFAR datasets.

Language modeling

Prior research, such as Orvieto et al. (2023), only evaluated models on classification tasks. However,

to gain a comprehensive understanding of model capabilities, it is crucial to gauge its ability to predict

subsequent natural language words in long-range scenarios. Thus, as part of our evaluation, we test

models on two widely-used language datasets, utilizing perplexity (PPL) (Meister and Cotterell, 2021)

as the evaluation metric. A lower PPL indicates superior model performance; we refer to Sec. 2.4 for

an introduction to PPL.

Our experiment underscores an aspect often overlooked in prior research: we adapt dataset segment

lengths to better evaluate the long-range capacity of models. To comprehend the rationale behind this

setup, readers should grasp two key facets: (1) Text data preprocessing involves segmenting text into

fixed-length sequences comprising L tokens. This value, L, is usually treated as a hyperparameter,

typically ranging from 30 to 512 tokens. (2) During language modeling training, recurrent-based

models predict and store predicted information about subsequent tokens. After the model "reads" the

entire sequence, perplexity is computed by averaging the whole prediction over the sequence. For

instance, with a segment length of 1024 tokens, the model is tasked with predicting the 1024th word

based on the preceding 1023 words. Consequently, as segment length and recurrent steps increase, the

model will face heightened difficulty predicting sentence endings.

We conduct experiments on the word-level language model dataset: WikiText-2 (WT2; Merity et al.,

2016). WT2 is a dataset derived from Wikipedia articles, comprising 2088k training tokens, 217k

validation tokens, and 45k test tokens, with a vocabulary of over 30k types. We use byte pair
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encoding (Sennrich et al., 2016) to increase the vocabulary size to 50,264, following the convention

in Melis et al. (2019) and Wang et al. (2019). This setup can help models learn the patterns of

low-frequency tokens (Melis et al., 2019).

6.2.2 Baselines

We categorize our baselines into (1) linear and multiplicative analysis and (1) SOTA models. In the

upcoming sections, we elaborate on our selection criteria and their relevance to our experimental

objectives.

Linearity and Multiplicativity Analysis

The baselines in this group are used to investigate how the fundamental properties of TTLMs—linearity

and multiplicativity—affect model effectiveness.

Linearity analysis. Orvieto et al. (2023) introduced a novel perspective that highlights the capacity of

linear RNNs to outperform their nonlinear counterparts (see Sec. 4.2.2), contradicting prior research

where nonlinearity is commonly considered pivotal for RNNs success (Siegelmann, 2012; Pascanu

et al., 2013; Erichson et al., 2020). In order to study the impact of linearity on model effectiveness, we

compare the vanilla version of RNNs (VRNNs; Mikolov et al., 2010) with nonlinear activations and

with identity activations. The hidden states of VRNNs are defined as:

h(t) = φ

(
Ah(t−1)+Bf(t)

)
, (6.1)

where f(t) ∈ R|V | denotes the one-hot vector of the word x(t), h(t) ∈ RR is hidden states, A ∈ RR×R is

the hidden-to-hidden matrix, B ∈ RR×|V | is the input-to-hidden matrix, and φ(·) is an element-wise

activation function.

Multiplicativity analysis. In this group, we consider Multiplicative Integration RNNs (MI-RNNs; Wu

et al., 2016) and Recurrent Arithmetic Circuits (RACs; Levine et al., 2018), since they can be viewed
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as special cases of TTLMs. Our Claim 5.3.2 states that under the condition of TT-scores: G = A⊙B,

the hidden states of RACs are identical to that of TTLMs. There is a nonlinear function φ such that the

hidden states of MI-RNNs are identical to that of TTLMs if they are accompanied by φ . Therefore,

MI-RNNs and RACs can help us comprehend the impact of tensor network multiplicativity on model

effectiveness. The hidden states of RACs and MI-RNNs are computed as follows:

h(t) = φ

(
Ah(t−1)⊙Bf(t)

)
, (6.2)

where φ(·) denotes nonlinear activations in MI-RNNs and identity activations in RACs.

SOTA models

We shall assess LMMs (see Sec. 5.4) against SOTA models using the same training setting in this

stage. Our chosen baselines span three domains: transformer-based, state-space, and recurrent-based

models.

Transformer (Vaswani et al., 2017). The vanilla Transformer has substantially advanced the effective-

ness of tasks in natural language processing. With its attention mechanism, the Transformer captures

dependencies and exhibits parallelism during training. Its effectiveness in various domains underscores

its position as an important benchmark in our evaluation.

Structured State Space Sequence model (S4; Gu, Goel, and Ré, 2022). State-space models (SSMs) have

achieved SOTA performance on LRA tasks. These models are inspired by continuous-time linear SSMs,

a well-established component of modern control systems (Gu, Goel, and Ré, 2022). Representative

deep SMMs include S4 and its variants (DSS (Gu, Goel, Gupta, et al., 2022), S4D (Gupta et al., 2022),

S5 (Smith et al., 2023)).

Linear Recurrent Units (LRUs; Orvieto et al., 2023). SSMs and Vanilla-RNNs are superficially similar,

as discussed in Sec. 4.2.2. Motivated by these similarities and differences, Orvieto et al. (2023) argued

that it is unclear where the performance enhancement of deep SSMs boost over Vanilla-RNNs comes

from. They show that the careful design of deep RNNs using standard signal propagation arguments
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can recover the impressive performance of deep SSMs on long-range reasoning tasks, while also

matching their training speed.

6.2.3 Architecture

We consider the standard S4 architecture (Gu, Goel, and Ré, 2022) and replace the S4 layers with

recurrent units listed in Sec. 6.2.2. The term recurrent unit refers to using a recurrent-based model,

such as Vanilla-RNN, as a single layer within a larger model architecture. During training, the recurrent

unit plays a role similar to the attention layer in Transformer (Vaswani et al., 2017).

We examine the impact of individual model components within the S4 architecture on recurrent units

in Sec. 6.3. We adopt the S4 architecture for two main reasons. (1) A larger architecture is crucial for

achieving higher model performance. Standalone recurrent layers struggle to compete in deep learning

benchmarks, prompting current research to optimize the single recurrent layer when integrated into a

larger architecture (Gu, Goel, and Ré, 2022; Orvieto et al., 2023; Smith et al., 2023; Gupta et al., 2022;

Gu, Goel, Gupta, et al., 2022). Thus, we believe that demonstrating the usefulness of a novel recurrent

unit within a larger architecture is essential. (2) The S4 architecture proves beneficial for recurrent

linearities. Orvieto et al. (2023) showcased that using linear recurrent units (removing nonlinear

activation in the vanilla RNN) led to substantial improvements in model performance. Orvieto et al.

(2023), however, used the S4 architecture mainly to compare their model strictly with S4, potentially

overlooking the distinct role each model component may play in supporting recurrent linearities. As

TNLMs inherently have linearity, we analyze how this larger architecture aligns with our approach in

Sec. 6.3.

The S4 architecture comprises three components: encoder, decoder, and residual block. The input data

undergo encoding, resulting in Nin features, which are then processed by a stack of residual blocks,

projecting them to Nout features. Subsequently, the decoder maps the Nout features to the desired

number of predicted classes. We set Nin = Nout for simplicity in all tasks, which will be denoted as

model size (N) in subsequent references.
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The encoder is a linear transformation that maps the input data from input size (denoted as M) to N. The

decoder varies depending on the task: for the classification task, the decoder is a linear transformation

that maps the data from size N to the number of output classes. For the language model tasks, the

decoder is the softmax function in order to compute perplexity.

Each residual block consists of identity skip connection, and the residual path containing the fol-

lowing ordered components: (1) a recurrent unit, (2) post layer/batch normalization (Ba et al., 2016;

Ioffe and Szegedy, 2015), (3) the Gaussian Error Linear Unit (GELU) activation (Hendrycks and

Gimpel, 2016) with dropout, and (4) position-wise linear transformation with the Gated Linear Unit

activation (Dauphin et al., 2017), as well as dropout.

Regarding dropout, we discuss the impact of two implementations of dropout in Sec. 6.3. The

implementation of dropout used in S4 (Gu, Goel, and Ré, 2022) and LRUs (Orvieto et al., 2023)

differs. In Gu, Goel, and Ré (2022), when tie_dropout is set to true, the layer randomly zeros out an

entire dimension of hidden states across the segment length. On the other hand, when tie_dropout

is set to false, it randomly zeros some elements of the input data with probability p. Thus, the

tie_dropout=True setting provides a stronger regularization, commonly used in sequence models.

6.2.4 Hyperparameters

We list the hyperparameters used throughout the experiments in Table 6.2. Hyperparameters are chosen

through grid search, considering the best performance on the validation set.

For our implemented models, we use AdamW optimizer (Loshchilov and Hutter, 2017). We use

warmup for the learning rate, starting from a value of 10−7 and increasing the learning rate linearly up

a specified value for the first 10% of training epochs. This is followed by cosine annealing for the rest

of the training down to 10−7. The specified value is called the base rate in Table 6.2, which is tuned

on a logarithmic grid of 10 within the range from 3×10−5 to 3×10−2 choose the optimal value.
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Table 6.2 Table of hyperparameters. The italicized terms indicate that they are tunable, but other terms vary
according to the different task settings (see Sec. 6.2.4 for a detailed explanation).

Component Hyperparameter Value

Encoder /
Decoder

Linear layer
Input size (M) {1, 3}
Model size (N) {128, 256, 512}
Output size [2, 10]

Residual
Block

Recurrent unit
Hidden size (H) {192, 256, 384}
Dropout 0.0
Activation {None, Tanh}

Position-wise FFN
Dropout {0.1, 0.25}
Activation GLU

Training

Learning rate

Base rate [3×10−5 −3×10−2]
LR factor 0.25
Schedule Cosine Annealing
Warm-up Num of epochs * 0.1

Num of epochs {50, 100, 200}
Batch size 50
Normalization Batch/Layer
Optimizer AdamW
Weight Decay {0, 0.05, 0.1}

We employ a reduced learning rate and no weight decay for the parameters in recurrent units (i.e., A

and B). Given the recursive computations in long-range scenarios, the learning rate for A and B is

generally below that of other model parameters (Gu, Goel, and Ré, 2022; Orvieto et al., 2023). This

lower learning rate was determined by multiplying the base learning rate by a factor (< 1).

6.3 Linearity and Multiplicativity Analysis

Recurrent nonlinearities are believed to be a key component for the success of RNNs — both in

theory and in practice (Siegelmann, 2012; Pascanu et al., 2013; Erichson et al., 2020). For example,

a strong property of single-layer sigmoidal and Tanh RNNs is Turing completeness, which cannot

be achieved by the linear variant (Chung and Siegelmann, 2021). Surprisingly, the S4 architecture

used by Orvieto et al. (2023) challenges this notion by demonstrating that linear recurrent units can

outperform nonlinear ones, as discussed in Sec. 4.2.2. In other words, accompanied by nonlinear

activations outside these units, the S4 architecture may allow us to employ linear recurrent units. Given
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that tensor networks are inherently linear, we aim to comprehend the specific reasons behind their

success, helping us to use TTLMs as recurrent units and potentially enhance model effectiveness.

Unfortunately, the S4 architecture’s impact on recurrent linearities remains incompletely under-

stood. Orvieto et al. (2023) compared the expressivity of recurrent linearities and nonlinearities, using

spectral analysis and Koopman operator theory (Koopman and Neumann, 1932). They demonstrated

that placing linear recurrent units alongside nonlinear feedforward blocks is sufficient to approximate

highly nonlinear systems. Their studies, however, did not examine other model components, including

residual connections, optimizers, dropout types, normalization, and nonlinear activations. These

components could have distinct impacts on recurrent linearities. Furthermore, another fundamental

property of tensor networks is multiplicativity. We need to examine whether the advantages of the S4

architecture apply to both additive linearities and multiplicative linearities.

In this section, we perform the following two tasks: (1) conduct an ablation study to evaluate the

impact of the S4 architecture using the sMNIST and sCIFAR datasets, and (2) test model capabilities

to predict the next word in long-range scenarios using the WT2 dataset. We aim to understand how

each component in the S4 architecture empirically contributes to training linear recurrent units and

whether this support remains consistent for both additive units and multiplicative units. To manage the

heavy load of experiments, we avoid extensive hyperparameter fine-tuning for optimal performance in

each task. Instead, we only tune learning rates for all models on a logarithmic grid of 10 to prevent

training issues arising from inappropriate rates.

6.3.1 Additive Recurrent Units

This section focuses on the performance of additive recurrent units on the sMNIST, sCIFAR, and

WT2 datasets. We compare two types of units: the vanilla version of RNNs using Tanh activations

(VRNN-TANH) as specified in Eq. 6.1, and the other with identity activations (VRNN-LIN). We

explain our rationale for choosing the two models to study the impact of recurrent linearities on model

effectiveness in Sec. 6.2.2.
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Table 6.3 Test accuracy (in %) of one-layer additive recurrent linearities on sMNIST and sCIFAR. BN and
LN refer to Batch Normalization and Layer Normalization. We refer to Sec. 6.2.3 for a detailed explanation of
the terms in the column "Architecture."%signifies numerical instability during training, causing loss values to
become NaNs.

Model
Dataset Architecture

sMNIST sCIFAR Residual Optimizer Tie_dropout Norm GLU GELU

VRNN-TANH

96.82 62.21 On AdamW Off BN On On
96.80 62.03 Off AdamW Off BN On On
91.63 22.28 On SGD Off BN On On
96.62 62.29 On AdamW On BN On On
96.43 60.53 On AdamW Off LN On On
96.91 62.19 On AdamW Off BN Off On
97.05 62.15 On AdamW Off BN On Off

VRNN-LIN

97.16 70.79 On AdamW Off BN On On
97.09 31.05 Off AdamW Off BN On On
34.34 30.33 On SGD Off BN On On
96.94 24.91 On AdamW On BN On On
% % On AdamW Off LN On On

84.61 70.45 On AdamW Off BN Off On
97.47 24.69 On AdamW Off BN On Off

Table 6.3 displays the test accuracy of VRNN-TANH and VRNN-LIN on pixel-level image classifica-

tion tasks. The column "Architecture" contains the five major components of the S4 architecture. Each

row displays the accuracy after removing one specific component from the architecture. As depicted

in Table 6.3, VRNN-LIN exhibits superior performance compared with VRNN-TANH on sMNIST

and sCIFAR, when the S4 architecture is kept intact. However, VRNN-TANH is more robust than

VRNN-LIN when subjected to changes in the S4 architecture. In the subsequent sections, we identify

two factors contributing to linearity vulnerability: gradient vanishing/exploding and exponential growth

in hidden states.

Gradients Exploding/Vanishing

The issue of vanishing or exploding gradients, as described by Bengio and Frasconi (1994) and Pascanu

et al. (2013), is one barrier to training RNNs with gradient descent. Theoretically, in the vanilla version

of RNNs with identity activations, the gradient of hidden states is computed as follows:

∂h(t)

∂h(t−n)
= (A⊤)n, (6.3)
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where h(t) = Ah(t−1)+Bf(t) and n ∈ [L]. The computation of the gradient of hidden-to-hidden matrices

entails ∂h(t)

∂h(t−n) , and as a result, the exponentiations of the matrix A within the aforementioned equation

are the root cause of the unstable gradient flow.

Figure 6.1 L2 norms of gradients of A on sCIFAR. We
add ε = 1×10−2 to display zero entries on logarithmic-
scale axes. VRNN-LIN-RES refers to the model in the
ninth row of Table 6.3; VRNN-LIN-TIE refers to the
eleventh row; and VRNN-LIN-GELU refers to the final
row.

The S4 architecture alleviates the vanishing or ex-

ploding gradients inherent in standalone Vanilla-

RNNs. As listed in Table 6.3, removing residual

connections, GELU activation, or tying dropout

results in poor effectiveness on sCIFAR. Empiri-

cally, Fig. 6.1 illustrates the L2 norm of the gradi-

ents of the hidden-to-hidden matrix A, showcas-

ing that these models experience initial gradient

explosion followed by vanishing within the initial

3k training steps. These models struggle to train

effectively owing to gradient flow issues.

Regarding gradient flow in recurrent linearities,

our results offer three empirical insights for the

model components in the S4 architecture: (1) they highlight the practical advantages of residual

connections and GELU activation for linearities. Residual connections enable the model to learn

residual functions, capturing differences between input data and recurrent units. GELU activation

promotes consistent gradient flow, contrasting with ReLU (Agarap, 2018), which can render neurons

inactive during training owing to zero outputs (Hendrycks and Gimpel, 2016). (2) Concerning dropout

techniques, stronger regularization could potentially disrupt gradient flow during training. Therefore,

we advise not to tie dropout across the sequence length when applying recurrent linearities. (3)

Removing GLU activation (Dauphin et al., 2017) did not cause gradient issues, but limited model

effectiveness. The significance of GLU was discussed in Orvieto et al. (2023). They argued that a linear

RNN, coupled with proper nonlinear reparameterization of inputs, can represent any regular nonlinear

dynamical system. A key finding in their analysis was that position-wise nonlinearities effectively

transferred signal information to higher frequencies, enabling the system to go beyond linearity in the
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Table 6.4 Test perplexity of Vanilla RNN without residual connections on WikiText-2. D refers to the number
of residual blocks. %signifies numerical instability during training, causing loss value to become NaNs.

Model
Segment Length

L = 16 L = 32 L = 64 L = 128 L = 256 L = 512 L = 1024

VRNN-TANH (D = 1) 65.84 58.03 60.50 56.97 58.40 60.76 60.69
VRNN-TANH (D = 6) 62.25 59.85 60.88 63.08 67.43 68.04 68.42
VRNN-LIN (D = 1) 68.38 59.98 60.28 66.86 68.00 % %

VRNN-LIN (D = 6) 72.38 % % % % % %

spectral domain and increasing the layer capacity. The empirical support from Table 6.3 reinforces their

assertion that combining recurrent linearities and nonlinear GLU activations surprisingly outperforms

recurrent nonlinearities.

While the S4 architecture can alleviate gradient exploding/vanishing for classification tasks, it fails to

handle gradient flow issues in language modeling tasks. Table 6.4 shows that when the segment length

in WT2 increases, one-layer VRNN-LIN fails to manage data with L = 512, and the sixth-layer VRNN-

LIN cannot even handle sentences with L = 32. Note that we do not include residual connections here,

as we sought to assess the impact of recurrent units fully; the models are still untrainable even if we

use residual connections.

Exponential Growth in Recurrent Steps

Numerical instability in recurrent nonlinearities is typically classified as gradient exploding or vanish-

ing (Pascanu et al., 2013). Regarding recurrent linearities, we propose a new factor contributing to their

numerical instability: hidden states can easily exceed precision bounds as their values exponentially

increase with recurrent steps.

We establish our claim through three steps. Initially, we trace the occurrence of NaN values. Fig.

6.2 illustrates the average of the components of the last sequence hidden state h(L) throughout the

training steps. For clarity, the term training step refers to an iteration during training, with a total count

equivalent to training examples (i.e., |T |) divided by batch size (i.e., B); the size of h(L) is B×L. Given

B = 50 and |T |= 54k, each epoch comprises 1400 training steps. At the 808th step, VRNN-LIN-LN

surpasses float16 precision bounds.
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Subsequently, we delve into the cause of NaN values. Fig. 6.3 illustrates the evolution of the average h(t)

across recurrent steps. For each training step, the model undergoes 784 recurrent steps, corresponding

to the sequence length of sMNIST (i.e., L = 784). Thus, the initial three peaks in Fig. 6.3 (left)

correspond to the first three points in Fig. 6.2.

Figure 6.2 Average of h(L) on sMNIST. VRNN-LIN

corresponds to the model in the eighth row of Table 6.3,
and VRNN-LIN-LN corresponds to the twelfth row. At
the 808th training step, the values in VRNN-LIN-LN
surpassed float16 precision bounds and became NaNs.

Third, we further categorize the pattern of this

monotonic growth by using the least squares

method (Marquardt, 1963) to fit an exponential

function to the data:

y = ae−bx (6.4)

where y is the average of the componentes of h(t)

and x ∈ [784] is the recurrent steps. The fitted

result is a = 0.051 and b =−0.033 (R2 = 0.995).

Thus, to a good approximation, the average of h(t)

exhibits exponential growth within each training

step. This growth should arise from the addi-

tive operation Ah(t−1)+Bf(t), driving h(t) beyond

data precision. Note that the averages of the hidden states are not distributed independently and iden-

tically (i.i.d.), which could lead to invalid inferences when using the least squares method for curve

fitting. We shall conduct additional statistical tests that do not rely on i.i.d. assumptions to ensure the

validity of the inference in future work.

Unlike recurrent linearities, this exponential growth can be effectively curbed by recurrent nonlineari-

ties, as shown in Fig. 6.3 (right). We assess three nonlinear activations: GELU, Tanh, and ReLU. The

average of h(t) remains stable across recurrent steps. We highlight two key observations regarding this

constraint: (1) This limitation does not appear to stem from an upper bound of nonlinear activations, as

ReLU and GELU successfully curtail the growth of h(t) despite lacking an explicit upper bound. (2)

This constraint maintains robustness even with increased learning rates (tested up to 3×10−2) and

modifications on model components.
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Figure 6.3 Additive hidden states within recurrent steps on sMNIST. (Left) Average of h(t) for recurrent
lienarities. VRNN-LIN corresponds to the model in the eighth row of Table 6.3, and VRNN-LIN-LN corresponds
to the twelfth row. (Right) Average of h(t) for recurrent nonlienarities. Models include VRNN-TANH (first row
of Table 6.3), VRNN-GELU (replacing Tanh with GELU), and VRNN-RELU (replacing Tanh with ReLU).

The S4 architecture partially addresses the problem of exponential growth in hidden states for recurrent

linearities. In essence, the S4 architecture preserves the increasing pattern of hidden states, but limits

their peak values over training steps, which enhances numerical stability: Upon comparing VRNN-LIN-

LN and VRNN-LIN, we observe that they both exhibit exponential growth in the average of h(t) (see

Fig. 6.3). As training progresses, however, the average of h(L) in VRNN-LIN consistently decreases

(see Fig. 6.2). In other words, the "peak" value of h(t) in VRNN-LIN consistently decreases.

While VRNN-LIN-LN reaches an explosive value, VRNN-LIN does not. Given that we solely

modify the normalization layer between VRNN-LIN and VRNN-LIN-LN, we speculate that batch

normalization can effectively control the scaling of hidden states in recurrent linearities in long-range

scenarios. It is worth noting that for recurrent linearities, even if we retain the intact S4 architecture

(i.e., VRNN-LIN), the model encounters NaN values if the learning rate reaches 3× 10−3. The

difference lies in the ability of recurrent nonlinearities to change the exponential growth, whereas the

S4 architecture primarily constrains the peak value of h(t) during recurrent steps.
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6.3.2 Multiplicative Recurrent Units

In the preceding section, we analyzed the impact of the S4 architecture on additive recurrent linearities.

Our observations indicated that the architecture partially mitigates two issues: exponential growth of

hidden states and gradient vanishing/exploding. Altering the architecture, however, could easily lead

to numerical instability for recurrent linearities, casting uncertainty on its wider applicability beyond

additive models. Considering the intrinsic multiplicative characteristics of tensor networks, we proceed

to investigate multiplicative recurrent linearities. Our objective is to contrast the impact of the S4

architecture on additive and multiplicative units.

We compare two types of units as specified in Eq. 6.2: MI-RNNs with nonlinear activations and the

one with identity activations (i.e., RACs). Their selection is primarily because that they can be viewed

as special cases of TTLMs. We refer to Sec. 6.2.2 for a detailed explanation. Before delving into

specific experiments, we shall clarify the term multiplicative integration in this context. The hidden

states of the two models are defined as follows:

h(t) = φ

(
Ah(t−1)⊙Bf(t)

)
, (6.5)

where ⊙ denotes the Hadamard product and φ is an activation function. This basic form of multiplica-

tive integration does not involve any additive operator. While Wu and King (2016) argued for the

advantages of multiplicative integration over additive integration, they introduced several modifications

to this basic form. Specifically, they first introduced two additional bias vectors, β 1 and β 2, added to

Ah(t−1) and Bf(t):

h(t) = φ

(
(Ah(t−1)+β 1)⊙ (Bf(t)+β 2)

)
. (6.6)

Then, they introduced another bias vector α to gate the term Ah(t−1)⊙Bf(t), obtaining the following

formulation:

h(t) = φ

(
α ⊙Ah(t−1)⊙Bf(t)+β 1 ⊙Bf(t)+β 2 ⊙Ah(t−1)

)
. (6.7)

94



Table 6.5 Test accuracy (in %) of one-layer multiplicative recurrent linearities on sMNIST and sCIFAR.
%signifies numerical instability during training, causing loss values to become NaNs. BN and LN refer to Batch
Normalization and Layer Normalization.

Model
Dataset Architecture

sMNIST sCIFAR Residual Optimizer Tie_dropout Norm GLU GELU

MI-RNN

93.55 % On AdamW Off BN On On
86.55 % Off AdamW Off BN On On
19.84 % On SGD Off BN On On
78.53 % On AdamW On BN On On
56.24 % On AdamW Off LN On On
87.64 % On AdamW Off BN Off On
96.18 % On AdamW Off BN On Off

RAC

65.79 % On AdamW Off BN On On
48.76 % Off AdamW Off BN On On
15.67 % On SGD Off BN On On
% % On AdamW On BN On On
% % On AdamW Off LN On On

36.68 % On AdamW Off BN Off On
79.54 % On AdamW Off BN On Off

Thus, Wu et al. (2016) considered that the general formulation of multiplicative integration in Eq. 6.7

naturally included the additive integration as a special case. Their alterations to multiplicative integra-

tion, however, introduced the additive operator, thereby deviating from the inherent multiplicativity of

tensor networks. Thus, our analysis solely focuses on the basic form of multiplicative integration, as

specified in Eq. 6.5.

We present the test accuracy for one-layer MI-RNN and RAC on sMNIST and sCIFAR in Table 6.5. In

contrast to Table 6.3, additive integration outperforms multiplicative integration in terms of robustness

and accuracy. Multiplicative integration struggles with images in sCIFAR with a sequence length of

1024, regardless of identity or nonlinear activation usage.
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Gradients Exploding/Vanishing

Gradient exploding or vanishing causes graver difficulties when training multiplicative recurrent units

compared with additive ones, supported by theoretical and empirical observations. Theoretically, the

gradient of hidden states in RAC can be computed as follows:

∂h(t)

∂h(t−n)
=
(

A⊤diag
(

Bf(t−n+1)
))n

, (6.8)

Figure 6.4 L2 norms of gradients of A on sCIFAR.
MI-RNN refers to the model in the first row of Table 6.5
and RAC to the eighth row.

where h(t) = Ah(t−1)⊙Bf(t) and n ∈ [L]. In com-

parison to Eq. 6.3, the exponentiation of Bf(t) in-

troduces more challenges during training within

multiplicative recurrent units. The empirical re-

sults, as listed in Table 6.5, also demonstrate the

difficulties: the models failed to be trained on sCI-

FAR; even on sMNIST with a sequence length of

784, the effectiveness of the models was notably

poorer when contrasted with additive counter-

parts.

Furthermore, the S4 architecture fails to stabilize

the gradient flow in multiplicative recurrent units,

as shown in Fig. 6.4. While gradient issues are present, they do not overwhelmingly impede model

training. As evidenced by MI-RNN in Fig. 6.4, despite gradient explosion, an accuracy of 93.55% is

attained on sMNIST. We posit that the primary obstacle lies in the computation of hidden states during

recurrent steps, a matter that we expound upon in the subsequent section.

Exponential Decay in Recurrent Steps
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Figure 6.6 Multiplicative hidden states within recurrent steps on sMNIST. We add ε = 1×10−50 to display
zero entries on logarithmic-scale axes. (Left) Average of h(t) in linear units. RAC corresponds to the model in
the eighth row of Table 6.5 and RAC-LN to the twelfth row. For each sequence (L = 784), the hidden states
at the first recurrent step have the highest mean and exponentially decrease to 0. (Right) Average of h(t) for
nonlinear units. Models include MI-RNN-TANH (first row of Table 6.3), MI-RNN-GELU (replacing Tanh with
GELU), and MI-RNN-RELU (replacing Tanh with ReLU).

Figure 6.5 Average of h(L) on sMNIST. We add ε =
1×10−50 to display zero entries on the logarithmic-scale
axis. RAC corresponds to the model in the eighth row of
Table 6.5 and RAC-LN to the twelfth row. At the 9479th
training step, h(L) in RAC-LN returned NaNs.

We identify that their weakness arises from the

computation of hidden states within recurrent

steps, analogous to the challenges observed with

additive recurrent linearities. Fig. 6.5 displays the

average of components of the last sequence hid-

den state h(L) during training steps. At the initial

10k steps, RAC-LN surpasses float16 precision

bounds, leading to NaN values.

While hidden state computation issues exist in

both additive integrations and multiplicative inte-

grations, their specifics differ (see Fig. 6.6). For

additive recurrent linearities, hidden states exhibit

exponential growth (see Fig. 6.3), while a monotonic decay in hidden states is observed for multiplica-

tive recurrent linearities. This decay arises from the recursive computation of Ah(t−1)⊙Bf(t), with

initializations between these vectors falling within the range of [0,1].
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Table 6.6 Test perplexity of models without residual connections on WikiText-2. D refers to the number of
residual blocks. %signifies numerical instability during training, causing loss values to become NaNs.

Model
Segment Length

L = 16 L = 32 L = 64 L = 128 L = 256 L = 512 L = 1024

MI-RNN (D = 1) 88.89 127.00 168.67 209.62 % % %

MI-RNN (D = 6) % % % % % % %

RAC (D = 1) 106.79 106.88 210.99 % % % %

RAC (D = 6) % % % % % % %

We further analyze the pattern of this monotonic decay by using the least squares method (Marquardt,

1963) to fit the decay with an exponential function in Eq. 6.4. The result yields a = 0.1604 and

b = 0.7731 (R2 = 0.9703). Therefore, to a good approximation, the average of h(t−1) at each training

step in multiplicative recurrents decays exponentially.

Nonlinear activations provide comparatively less advantage to multiplicative recurrent units than to

additive units. While hidden states within nonlinear activations in additive recurrent units demonstrate

stable behavior (see Fig. 6.3), those in multiplicative recurrent units continue to exhibit an exponential

decay (see Fig. 6.6 (left)). Despite the weakness of nonlinear activations, multiplicative recurrent

nonlinearities still remain more robust than linearities. Two advantages are observed: (1) In comparison

to MI-RNN-TANH and other variants, Tanh activation can attenuate the rate of decay in hidden states.

This feature aids in managing longer sentence lengths effectively. (2) In the context of drawing the

right part of Fig. 6.3, certain entries are negative in recurrent linearities, making them unsuitable for

representation in a logarithmic figure; thus, we use their absolute values for plotting purposes. The

R-squared value for recurrent linearities is only 0.4038. In contrast, the average of hidden states in

multiplicative recurrent nonlinearities is positive, indicating a more stable exponential decay trend.

Multiplicative integration consistently underperforms additive integration in language modeling tasks,

as shown in Table 6.6 (cf. Table 6.4). For multiplicative integration, we reduce the learning rate

to 3 × 10−5 and set the rate within recurrent units at 7.5 × 10−6 to prevent encountering NaNs

during training. Even with such low learning rates, the model struggles to handle sequences of

significant length (L = 256), underscoring the limitations of multiplicative integration in long-range

scenarios. Furthermore, these experiments highlight the limitations of the S4 architecture in effectively
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constraining the exponential decay of hidden states and gradient flow in multiplicative recurrent

units.

After presenting our analysis of linearity and multiplicativity, we express concerns regarding the appli-

cability of tensor networks in long-range scenarios. The core attributes of tensor networks—linearity

and additivity—cause considerable training difficulties. These properties might carry theoretical

benefits, but their real-world efficacy lags behind that of other recurrent units. Notably, although the

S4 architecture can accommodate linearity to a certain extent, it encounters difficulties when handling

multiplicative recurrent units.

6.4 Evaluation on Linear Multiplicative Models

To enhance the effectiveness of recurrent units, prior research has explored gating mechanisms (Hochre-

iter and Schmidhuber, 1997; Chung et al., 2014; Zhou et al., 2016), connections (Hihi and Bengio,

1995; Zhang et al., 2016; Koutnik et al., 2014; Chung et al., 2016), and initializations (Talathi and

Vartak, 2015; Arjovsky et al., 2016; Helfrich et al., 2018), as discussed in Sec. 4.2.1. These approaches,

however, seldom focus on models that are both linear and multiplicative. In the subsequent section, we

shall evaluate our proposed models (i.e., LMM, LMM-MMn, and LMM-MLP) as outlined in Sec. 5.4

to tackle these intricate challenges.

6.4.1 Exponential decay in Complex Numbers

A key distinction between our proposed model and previously evaluated multiplicative recurrent

linearities is the complex-valued representations in our models. This property introduces numerical

vulnerabilities in the hidden states. In our earlier discussion in Sec. 6.3.2, we analyzed the exponential

decay of hidden states within multiplicative recurrent linearities operating in the real domain. When

comparing RAC between the real and complex domains, we observe a faster exponential decay of

hidden states in the complex domain (see Fig. 6.7). This section analyzes the factors contributing to

this phenomenon.
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Figure 6.8 Multiplicatitions of four complex or real numbers sampled 100 million times from a normal
distribution with mean 0 and variance 1.

Figure 6.7 Average of h(t) on sMNIST. We add ε =
1×10−50 to display zero entries on the logarithmic-scale
axis. LMM displays the real part of the hidden states.

The use of complex numbers accelerates the de-

cay of hidden states. To ascertain disparities in

the multiplication outcomes between complex

and real numbers, we emulate the exponential

decay of multiplicative recurrent linearities. We

generate both real and complex numbers 100 mil-

lion times from a normal distribution with mean

0 and variance 1. Following this, we execute mul-

tiplicative operations on the sets of four complex

or real numbers. This design aligns with the four

multiplication operations in Eq. 5.20 (i.e., the

component j ∈ [N] of h(t) at timestamp t ∈ [L] is

computed as h(t)j = λ jh
(t−1)
j γ jx

(t)
j ).

As shown in Fig. 6.8 (left), the empirical distributions of complex numbers and real numbers after four

multiplication operations are significantly different. We conduct a two-sample Kolmogorov-Smirnov

test (Massey Jr, 1951), indicating that the distributions of the real part of complex numbers and real

numbers are likely dissimilar (p−value < 0.001). Before z-score normalization, the distribution of

complex numbers exhibits longer and fatter tails compared with that of real numbers. Note that Fig.

6.8 (left) represents the result of one iteration (i.e., one recurrent step during model training). In

practical scenarios, the iteration count could reach 784 (e.g., in sMNIST), leading complex numbers to
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more likely exceed normal precision bounds. Theoretical instability may stem from the mechanism

of complex number multiplication. Multiplying two real numbers a and b is simply ab. Multiplying

two complex numbers (a+ ib) by (c+ id) results in (ac−bd)+ i(ad +bc). As supported by Fig. 6.8

(left), the norm of (ac−bd) or (ad +bc) after four multiplication operations often exceeds that of ab

when initialized under a normal distribution.

Although the norm of complex numbers, after multiplications, tends to be larger than that of real

numbers, attributing a higher likelihood of generating outliers to complex numbers is not accurate. We

compute Fisher’s kurtosis (DeCarlo, 1997) before normalizing the two empirical distributions. The

kurtosis value for the real part of complex numbers is 21.1, which is surprisingly lower than that of real

numbers (i.e., 82.14). A higher kurtosis value indicates either more existing outliers (for the sample

kurtosis) or a propensity to produce outliers (for the kurtosis of a probability distribution) (Westfall,

2014). Although this result contradicts the observation from Fig. 6.8 (left), when we normalize the

empirical distribution, the distribution of real numbers exhibits longer and fatter tails compared with

that of complex numbers, as shown in Fig. 6.8 (right).

Introducing complex-valued representation amplifies training difficulties for the models. This issue

can be mitigated by LMMs. Comparing LMM and RAC in Fig. 6.7, it is evident that the average

of hidden states decays substantially slower in LMM. This result arises from the setup of learnable

parameter matrices in LMM, specifically the replacement of dense matrices (i.e., matrices with almost

non-zero elements) with diagonal matrices. Without dense matrices, the component of j ∈ [N] of h(t)

at timestamp t ∈ [L] is computed as λ jh
(t−1)
j γ jx

(t)
j in Eq. 5.20. This computation avoids the summation

brought by matrix multiplication, which could make the data decay faster.

However, the exponential pattern persists in LMM, prompting us to employ normalization techniques

(see Sec. 5.4.2). As depicted in Fig. 6.9, the values of hidden states stabilize after applying Min-Max

normalization or an MLP layer. In the subsequent section, we will evaluate the effectiveness of LMM,

LMM-MLP, and LMM-MMn.
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Figure 6.9 Average of the real part of hidden states within recurrent steps on sCIFAR. The legend before
corresponds to the value of ΛΛΛh(t−1)⊙ΓΓΓx(t) and after to the value after an MLP layer (i.e., LMM-MLP) or
Min-Max normalization (i.e., LMM-MMn).

6.4.2 Model Effectiveness

Table 6.7 Test accuracy (in %) of one-
layer models on sMNIST and sCIFAR.

sMNIST sCIFAR

LMM % %

LMM-MLP 96.13 44.71

LMM-MMn 79.21 46.15

We evaluate our proposed models in pixel-level classification

tasks and language modeling tasks, as presented in Table 6.8

and 6.7. Our initial finding indicates that training multiplicative

recurrent linearities using complex numbers is unstable. Even

though the hidden states of LMM exhibit slower decay com-

pared with RAC (see Fig. 6.7), it consistently encounters NaNs

numbers during training, even when employing a lower learning

rate (i.e., 3×10−7).

The exact reasons contributing to this instability remain uncertain. Two factors potentially contributing

to this issue are: (1) In the previous section, we analyzed that the distribution of complex numbers

multiplications has longer and fatter tails compared with that of real numbers (see Fig. 6.8). (2) The

gradient properties of complex numbers appear to be more sensitive and vulnerable than those of real

numbers within the PyTorch framework (Paszke et al., 2019). Given a complex number x = a+ ib

where a,b ∈ R, PyTorch treats the real and imaginary parts of numbers (i.e., a and b) as separate

learnable parameters instead of a single entity (i.e., x). This distinction can lead to more multiplications
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Table 6.8 Test perplexity of one-layer models without residual connections on WikiText-2. LMM-MMn
outperforms LMM-MLP and other multiplicative recurrent units on all sequence lengths (cf. Table 6.6)

.

Model
Segment Length

L = 16 L = 32 L = 64 L = 128 L = 256 L = 512 L = 1024

LMM (Eq. 5.20) % % % % % % %
LMM-MLP (Eq. 5.23) 66.65 65.19 65.63 66.26 66.32 71.50 74.93
LMM-MMn (Eq. 5.24) 65.66 62.01 62.90 65.04 63.57 65.59 66.84

in the gradients when using complex numbers compared with real numbers, potentially resulting in

numerical instability. Formally, the gradient of hidden states in Eq. 5.20 is computed as follows:

∂h(t)

∂h(t−n)
=
(

ΛΛΛ
⊤diag

(
ΓΓΓx(t)

))n
, (6.9)

where n ∈ [t]. Since ΛΛΛ and ΓΓΓ are diagonal matrices, the component of j ∈ [N] of ∂h(t)

∂h(t−n) is computed as

(λ jγ j)
n

∏
t
i=t−n+1 x(i)j . When treating the real and imaginary parts of numbers as separate parameters,

the computation of gradients in the complex domain requires 8n times of multiplications than when

dealing with real-valued variables (i.e., 2n). This increased multiplications may lead to numerical

instability in the models. To mitigate this challenge, specialized techniques and libraries may be

necessary, like JAX (Bradbury et al., 2018), designed for efficiently handling complex-valued gradients.

Further exploration of this topic is left for future work.

Our second finding is that the model using complex numbers is effective if the exponential decay in

hidden states can be constrained. Table 6.8 lists the test perplexity of LMM-MMn and LMM-MLP on

WikiText-2 with varying sentence lengths. LMM-MMn is more effective than multiplicative recurrent

units: RACs and MI-RNNs (cf. Table 6.8). Compared with additive recurrent linearities, LMM-MMn

is more effective and stable than VRNN-LIN, but slightly worse than VRNN-TANH (see Table 6.4).

The reason contributing to this success is that Min-Max normalization or an MLP layer curbs the

exponential growth of hidden states, as shown in Fig. 6.9. An advantage of LMM-MMn lies in its

recurrent layer having fewer parameters than other recurrent units, reduced from 2H2 to 4H (H is

the dimension of hidden states). Furthermore, considering LMM-MMn’s linearity, multiplicativity,

and complex-valued representations, we believe that it inherits the fundamental properties of tensor

networks. Thus, its success provides empirical evidence for researchers that leverage tensor networks

to analyze the expressivity of neural networks (e.g., Khrulkov et al., 2018; Cohen et al., 2016).
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7
Discussion and Future Work

We provide a discussion capturing the main findings and implications of the thesis, along with their

limitations or weaknesses in Sec. 7.1. In closing, we offer insights and suggestions for future work in

Sec. 7.2.

7.1 Main Findings and Implications

Training Recurrent Linearities within the S4 architecture Is Feasible

Linearity is a theoretical property of tensor networks, which contrasts with nonlinearity—a key property

for the success of neural network models (e.g., Siegelmann, 2012; Pascanu et al., 2013; Erichson et al.,

2020). Our ablation in Sec. 6.3.1 explained the underlying factors in the S4 architecture (Gu, Goel,

and Ré, 2022) driving the success of linear recurrent units. When the unit was linear (i.e., with identity

activations), it encountered two issues: (1) The unstable gradient flow was due to exponentiation

forms (see Eq. 6.3). (2) Hidden states easily exceeded precision bounds as their values exponentially

increased within recurrent steps (see Fig. 6.3 (right)).

The S4 architecture partially addressed the aforementioned issues. Its components, including residual

connections, GELU activation, and dropout implementations, stabilized the gradient flow (see Fig.

6.1). To curb the exponential growth, the S4 architecture preserved the increasing pattern of hidden

states, but limited their peak values over training steps, which enhanced numerical stability (see Fig.

6.2). However, recurrent linearities within the S4 architecture necessitated a low learning rate (i.e.,

3×10−4) to prevent encountering "NaN" values, whether in tasks involving pixel-level classification or

language modeling. In contrast, nonlinear recurrent linearities exhibited greater robustness, as nonlinear

104



activations curbed the growth of hidden states (see Fig. 6.3 (right)). An interesting observation was

that ReLU and GELU controlled growth despite lacking an explicit upper bound. Thus, we speculate

that this constraint arises not from the upper bound of nonlinear activations, but from their nonlinearity.

Taking these findings together, we emphasize that training recurrent linearities appears feasible only

when accompanied by the S4 architecture, and the effectiveness of standalone recurrent linearities

remains uncertain.

A limitation of the experiments is that we used the least squares method (Marquardt, 1963) to fit

an exponential function to the growth of hidden states. These data are however not independently

and identically distributed (i.i.d.), potentially resulting in invalid inferences. We shall use statistical

techniques such as bootstrap methods (e.g., Genest and Rémillard, 2008) to obtain valid inferences in

future work.

Multiplicativity Causes Graver Difficulties than Linearity during Training

Multiplicativity is another theoretical property of tensor networks, yet its impact on model effectiveness

has been seldom discussed in prior research. We emphasized that no existing research exclusively used

multiplication integration in neural network models. Even studies (e.g., Wu et al., 2016) advocating

for the advantages of multiplication integration incorporated additive integration into their models

(see Sec. 6.3.2). Our ablation in Sec. 6.3.2 showed that multiplicative recurrent linearities failed to be

trained on sCIFAR, and even on sMNIST with a sequence length of 784 (see Table 6.5). We identified

two factors that contribute to their poor effectiveness: (1) multiplicative recurrent linearities introduced

extra exponential forms into their gradient flow compared with the additive units (see Eq. 6.8), and

(2) their hidden states decayed exponentially, irrespective of the use of nonlinear activations (see Fig.

6.6).

The poor effectiveness of the models on language modeling tasks (see Table 6.6) further substantiates

the difficulty of training a linear and multiplicative recurrent unit (i.e., RACs). It is worth noting

that we theoretically demonstrate that RACs are a special implementation of TTLMs in Sec. 5.3.2.

Thus, our experiment at this stage raises questions about the empirical reliability of using tensor
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networks to analyze the expressivity of neural network models, since linearity and multiplicativity, as

the fundamental properties of tensor networks, pose massive difficulties for training models.

In future work, this conclusion could be theoretically and experimentally substantiated. On the

experimental side, we shall implement previous tensor network language models on language modeling

tasks (e.g., WT2; Merity et al., 2016). Although the research objectives and architecture of previous

models, particularly focusing on the drawbacks of their training paradigm, are discussed in Sec.

4.3, we have not conducted empirical comparisons because reimplementation is time-consuming.

On the theoretical side, we could analyze the upper bound and convergence of the hidden states in

multiplicative recurrent units models, in order to validate the difficulties posed by the multiplicativity

of tensor networks in model training.

Complex Numbers Introduces Numerical Vulnerabilities

As demonstrated by the previous two findings, linearity and multiplicative pose difficulties in training

tensor networks, and our proposed tensor-train language models (TTLMs) are no exception. To devise

an effective class of TTLMs, we proposed the Linear Multiplicative Models (LMMs) in Sec. 5.4.

LMMs inherit fundamental properties from tensor networks, which are linear, multiplicative, and

complex-valued. Though hidden states of LMMs exhibited slower decay compared with that of RACs

(see Fig. 6.7 and Table 6.7), LMMs without normalization techniques still failed to be trained on

pixel-level classification tasks and language modeling tasks.

We identified two contributing factors related to the introduction of complex numbers. (1) We observed

a faster exponential decay of hidden states in the complex domain (see Fig. 6.7). We emulated this

exponential decay of multiplicative recurrent linearities in Sec. 6.4.1. Our result showed that the

distribution of complex numbers exhibited longer and fatter tails compared with that of real numbers

(see Fig. 6.8 (left)). This observation was supported by a two-sample Kolmogorov-Smirnov test,

indicating likely dissimilarity between the distributions of the real part of complex numbers and real

numbers. Interestingly, after Z-score normalization, the distribution of real numbers had longer and

fatter tails than that of complex numbers (see Fig. 6.8 (right)). (2) We speculate that the second reason
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is that our implementation framework (i.e., PyTorch) treats the real and imaginary parts of numbers as

separate parameters instead of a single entity, resulting in more multiplications when computing the

gradient of complex numbers (see Sec. 6.4.2). This property potentially leads to numerical instability

in the models.

A limitation of the experiments is that we did not adapt the model architecture to accommodate

complex-valued representations. A study by Sarroff et al. (2015) shows that the effectiveness of

complex-valued RNNs does not outperform its real-valued counterpart. Several factors could impact

the effectiveness of complex-valued models. For example, an alternative deep learning framework,

like JAX (Bradbury et al., 2018), which is more suitable for handling complex-valued gradients, is

preferred by some researchers (e.g., Orvieto et al., 2023). We will discuss this direction in detail in

Sec. 7.2.

Linear, Multiplicative, and Complex-valued Model is Plausible in Practice

Since introducing complex-valued representation amplifies training difficulties for the model, we

further develop normalization techniques for LMMs to stabilize the computation of hidden states in

the latter part of the sentence (see Sec.5.4.2). When LMMs use a normalization technique such as

Min-Max normalization (i.e., LMM-MMn), the model is more effective in language modeling tasks

than all multiplicative recurrent units and vanilla RNNs with identity activations (see Table 6.6).

Since LMM-MMn inherits fundamental properties from tensor networks, which are linear, multi-

plicative, and complex-valued. We believe that its success provides concrete empirical evidence for

researchers (e.g., Cohen et al., 2016; Khrulkov et al., 2018) that leverage tensor networks to analyze

the expressivity of neural networks.

A limitation of the experiments is that we did not comprehensively compare our models and SOTA

models. Although we mentioned SOTA models such as LRUs (Orvieto et al., 2023) and the commonly

used LRA tasks (Tay et al., 2020) in our experimental setup (see Sec. 6.2), we did not directly compare

our models with them. This decision was primarily because that LMMs exhibit a large effectiveness
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gap compared to SOTA models, making the comparison less informative at the current stage. In other

words, LRA tasks are hard to be solved by the current version of LMMs. In future research, we need

to refine the architecture of LMMs and then compare it with SOTA models on LRA tasks to provide a

more comprehensive assessment of its capabilities. We outline a potential direction for improvement

in Sec. 7.2.

7.2 Future Work

From this discussion, we discuss the four major findings of the thesis and outline the potential directions

to substantiate these findings. We shall summarize them here and then provide detailed insights into

the last two directions (which may require more innovative work). In essence, the limitations and

possible directions are as follows: (1) To enhance the validity of our findings regarding the growth

pattern of hidden states, we need to employ statistical techniques, such as bootstrap methods, that do

not rely on the i.i.d assumption. (2) To verify the training difficulties caused by multiplicativity, we

could conduct both experiments and theoretical analysis. For example, we can analyze the convergence

of hidden states when using multiplicativity and perform an experimental evaluation of previous

tensor network language models. (3) The introduction of complex-valued representations requires

further modifications to the model architecture. Otherwise, the effectiveness of complex-valued models

may not surpass that of their real-valued counterparts. (4) There exists a significant gap between the

effectiveness of LMMs and SOTA models. Before conducting a comprehensive evaluation of LMMs,

we must refine their architecture. We believe the primary focus should be on improving normalization

techniques.

Complex-valued Techniques

Tensor networks have emerged as an important theoretical tool to investigate quantum many-body

systems (Evenbly and Vidal, 2011; Han and Hung, 2017). From the perspective of quantum mechanics,

defining a TN-like model in the complex domain seems to be more natural than in the real domain.

From the perspective of the models themselves (i.e., LMMs), we also argue that unlike the symmetric
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setting where eigenvalues and eigenvectors are real-valued, one has to allow for complex entries to

achieve full equivalence in the non-symmetric case (see Sec. 5.4.1).

In practical scenarios, LMMs however exhibit subpar effectiveness, and we attribute this primarily to the

lack of architectural refinement when the model is defined in the complex domain. The implementation

of LLMs can be categorized into the split Complex-Valued Neural Networks (split-CVNNs, Lee et al.,

2022), where complex-valued input (real and imaginary parts) splits into a pair of real-valued inputs

and feeds into the real-valued neural network (RVNNs). Also, the activation function, Min-Max

normalization (MMn), operates on real-valued weights (i.e., the real part of the hidden states) instead of

complex-valued weights. Though this setup makes the model easier for us to implement, it could lead

to phase distortion (i.e., the phase information of complex-valued output is not captured accurately)

and inaccuracy in approximating the output of the neural network as it is updated by using real-valued

gradients, which does not represent the true complex gradient (Savitha et al., 2009).

Thus, to deal with complex-valued representations, we may need to consider both the weights and

activation functions in the complex domain (e.g., Hirose, 1992). To achieve this goal, we could

consider the following two options in the future: (1) The design of activation functions remains a

challenging and long-standing task in the field of CVNN (Lee et al., 2022). One direction is to design

a suitable complex-valued activation function (i.e., normalization function or factor in LMMs). For

instance, Tachibana and Otsuka (2018) discussed four types of ReLU in complex domains as potential

options. (2) A broader and more ambitious vision entails developing gradient-based algorithms in

the complex domain. In our previous discussion in Sec. 2.3, we introduced the learning algorithm

for RNNs, Backpropagation Through Time (BPTT) (Werbos, 1974; Rumelhart et al., 1985; Werbos,

1990); BPTT is a particular type of Backpropagation algorithm (BP) (Rumelhart et al., 1986). The BP

algorithm has been extended into complex domains by various researchers, including (Benvenuto and

Piazza, 1992; Leung and Haykin, 1991; Nitta, 1997). Thus, devising a new variant of BPTT in the

complex domain is a possible direction to enhance model effectiveness.
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Normalization Functions

Although normalization functions (e.g., MMn) stabilize gradients and mitigate exponential issues in

hidden states, they introduce unexpected difficulties. For instance, while LMMs-MMn is effective

language modeling, it struggles in pixel-level classification tasks. We hypothesize that this divergence

stems from the need for more coherent information retention in pixel-level classification tasks. Specifi-

cally, an activation function alters the value of hidden states at each time, which constantly morphs

past information; In the tasks requiring access to long-range past information (e.g., PathX in LRA

tasks), this constant information morphing impedes the model to retrieve past information. An example

that may relate to this observation is the challenges faced by "powerful" neural network models that

struggle to do a simple copying task (Smolensky et al., 2022). For example, the model takes an ordered

list of five digits (e.g., [3,9,7,4,7]), encoding the entire sequence internally, and then reproducing that

sequence as the output.

We believe that a pivotal innovation for improving model effectiveness involves devising an elegant

normalization factor tied to the original model parameters (i.e., ΛΛΛ,ΓΓΓ in Eq. 5.20), without introducing

additional parameters (e.g., LMM-MLP) or functions (e.g., LMM-MMn). An illustrative example of

this can be found in Orvieto et al. (2023), where they introduce a normalization factor tied to λi in Eq.

5.22 (i.e., log(
√

1−|λi|2)). This normalization factor enabled their model to successfully tackle the

PathX problem with a sequence length of 16k tokens. As we introduced in Sec. 4.2.2, the derivation of

their normalization factor demands considerable effort, which involves theoretical analysis such as the

convergence of hidden states and significant engineering efforts.

In future work, we could theoretically and experimentally validate the information loss w.r.t. time steps

caused by normalization functions and devise a novel normalization factor tailored to multiplicative

models, with the aim of further enhancing their effectiveness and efficiency.
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8
Conclusion

Tensor networks have been used to interpret the theoretical properties of neural networks, albeit

without concrete empirical evidence. Focusing on this issue, we introduce a class of tensor-train

language models (TTLMs). TTLMs encode the joint probability distribution of sequences into a

wave function and learn the conditional probability distributions during training. Our experimental

evaluation underscores the difficulties caused by the theoretical properties of tensor networks, including

linearity, multiplicativity, and complex-valued representations.

To enhance the effectiveness of TTLMs, we introduce a class of complex-valued variants: the Linear

Multiplicative Models (LMMs), which reduce the number of parameters in the recurrent layer and

maintain effectiveness comparable to vanilla RNNs. LMMs inherit the fundamental properties of

tensor networks; thus, their success in language modeling tasks provides empirical support for prior

research that establishes the connections between neural networks and tensor networks. The linearity

and multiplicativity of LMMs also offer a novel perspective in a field dominated by nonlinear and

additive models.
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Melis, Gábor, Tomáš Kočiskỳ, and Phil Blunsom (2019). „Mogrifier LSTM“. In: International Confer-

ence on Learning Representations.

Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher (2016). „Pointer sentinel

mixture models“. In: arXiv preprint arXiv:1609.07843.

Mhammedi, Zakaria, Andrew Hellicar, Ashfaqur Rahman, and James Bailey (2017). „Efficient orthog-

onal parametrisation of recurrent neural networks using householder reflections“. In: International

Conference on Machine Learning. PMLR, pp. 2401–2409.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). „Efficient estimation of word

representations in vector space“. In: arXiv preprint arXiv:1301.3781.

Mikolov, Tomas, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur (2010).
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