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Towards Language Modeling Using Tensor Trains

Anonymous Authors1

Abstract
Tensor networks have previously shown great po-
tential in language modeling in theory but lack
practical implementations in real natural language
tasks. To make it practical, we propose a novel
tensor network language model based on the sim-
plest tensor network (i.e., tensor trains), called
‘Tensor Train Language Model’ (TTLM). TTLM
represents sentences in an exponential space con-
structed by the tensor product of words, but in
practice alternatively, computes the probabilities
of sentences in a low-dimensional fashion. Ex-
perimental evaluations on real language modeling
tasks show that the proposed variants of TTLM
(i.e., TTLM-Large and TTLM-Tiny) outperform
the vanilla Recurrent Neural Networks (RNNs)
with low-scale of hidden units. Interestingly,
we demonstrate that the architectures of Second-
order RNNs, Recurrent Arithmetic Circuits, and
Multiplicative Integration RNNs are, essentially,
special cases of that of TTLM.1

1. Introduction
Human languages, like many biological systems, including
families of proteins, genomes, and neurons in the brain,
have significant long-range correlations that decay with
a power law (Tagliazucchi et al., 2012; Mora & Bialek,
2011). Current network models like LSTMs (Hochreiter
& Schmidhuber, 1997) are hard to match long-range and
higher-order statistics of natural languages (Lin & Tegmark,
2016).

Recently, researchers have turned to tensor network lan-
guage modeling, which contains models that exhibit cor-
relation functions that decay with the power law (Pestun
& Vlassopoulos, 2017; Pestun et al., 2017; Miller et al.,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1The code is available at https://github.com/
tensortrainlm/tensortrainlm.

2021). Tensor networks are, roughly, decompositions of
large tensors into sets of smaller tensors and have been
employed in physics, mathematics, and machine learning
(Cohen et al., 2016). However, the so-called ‘tensor network
language model’ is either a concept that needs to be proved
practically (Pestun & Vlassopoulos, 2017) or unsuitable in
real-world language modeling tasks (Miller et al., 2021) due
to their way of modeling probabilities. Towards making
tensor network language modeling practical, we make the
first step to applying it to real language modeling datasets.

As proof-of-concept work, we derive a Tensor Train Lan-
guage Model (TTLM) (the simplest tensor network). Tech-
nically, we represent a sentence based on the exponential
semantic space constructed by the tensor product of word
representations. The probability of the sentence is defined
by the inner product of two high-dimensional tensors: the
input Φ(X) and the global coefficients A, and decomposed
into conditional probabilities.

Under the framework of TTLM, we propose two variants:
TTLM-Tiny and TTLM-Large. Also, we clarify the re-
lationship between the proposed TTLM and a series of
Recurrent Neural Networks (RNNs) (i.e., Second-order
RNNs (Goudreau et al., 1994), Recurrent Arithmetic Cir-
cuits (RACs) (Levine et al., 2018), and Multiplicative Inte-
gration RNNs (MI-RNNs) (Wu et al., 2016)). These con-
nections open a new eye to understanding RNNs and give
some natural implementations for TTLM.

We benchmark these TTLM variants and analyze the dif-
ference in their working mechanism and behaviors. Experi-
mental results on the language modeling task show that our
TTLM variants could outperform than Vanilla-RNNs under
the same training setting. These demonstrate the feasibility
of TTLM.

The main contributions of our work can be summarized as
follows:

• We propose a novel Tensor Train Language Model, as
an illustration of how tensor networks can be applied
to real-world language modeling datasets.

• We propose two novel TTLM variants, TTLM-Large
and TTLM-Tiny, and theoretically demonstrate the
relationship between TTLM and a series of existing

https://github.com/tensortrainlm/tensortrainlm
https://github.com/tensortrainlm/tensortrainlm


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2023

RNNs.

• Compared to Vanilla-RNNs on WikiText-2 and PTB
datasets, TTLM-Large reduces perplexity by 14.3 and
16.0, respectively, and TTLM-Tiny reduces perplexity
by 1.7 and 8.5, respectively.

2. Related Work
Previous studies on tensor networks in machine learning
have mainly been devoted to analyzing the theoretical prop-
erties of neural networks. A better understanding of feed-
forward, convolutional and recurrent architectures has been
gained, including compression parameters (Novikov et al.,
2015), expressive power (Cohen et al., 2016; Cohen &
Shashua, 2016; Khrulkov et al., 2018), and depth efficiency
for long-term memory (Levine et al., 2018). For sequence
modeling tasks in NLP, there are two stages of the previous
research.

Theoretical Proposals. (Pestun & Vlassopoulos, 2017)
propose a tensor network language model aims to construct
the long-range correlation in real-world language modeling,
(Pestun et al., 2017) propose a quantum statistical language
model on a one-dimensional lattice which is called trace-
density model. To the best of our knowledge, these tensor
network language models have remained a theoretical pro-
posal instead of an empirical one.

Sequence Modeling. (Novikov et al., 2021) propose a new
efficient tensor train-based approach to tensor-train density
estimation that allows efficient computation of probability
density function. (Miller et al., 2021) apply a recurrent
tensor network, uniform matrix product state, to the prob-
abilistic sequence modeling while opening significant new
research directions in the design of sequential generative
models. However, probably due to the efficiency issue, most
of the existing models have only been tested on small vo-
cabulary size and simple datasets like Tomita grammars
(Tomita, 1982), further evaluation on moderately-scaled
natural language datasets is necessary to fully assess their
performance. We provide a comparison of the datasets we
used with related work in the Appendix: C.

This paper is the first work to derive a tensor network lan-
guage model in a way that can be applied to real-world
language modeling datasets. The efforts to improve effi-
ciency are twofold. First, we do not calculate the probability
normalization term used for the total probability law; in-
stead, we turn to calculate conditional probabilities based
on context representations, as described in Sec. 4.2.3. Sec-
ond, we further decompose TT cores and use low-scale
hidden units, see in Sec. 5.1.

3. Preliminaries
We briefly recapitulate basic notions and notations2; full
technical introductions can be found in standard textbooks
(Bi et al., 2022; Itskov, 2009).

Notation. For the purposes of this paper, every tensor A
is a multidimensional array of elements (called components)
of R, each denoted by its integer coordinates in the array;
e.g., for a two-dimensional array, the component at position
i, j ∈ N is denoted Aij . The order of a tensor is how
many indices it has (e.g., a vector v is a first-order tensor,
a matrix M is a second-order tensor, etc.). The dimension
of a tensor refers to the number of values that a particular
index (or so-called mode) can take, e.g., the dimension of
B ∈ RI1×I2×I3 is I1 × I2 × I3.

Tensor Product (Cohen et al., 2016). For two tensors
C ∈ RI1×···×Ij (order j) and D ∈ RIj+1,×···×Ij+k (order
k), their tensor product is denoted by ⊗ and return a tensor
Ei1···ij+k

= Ci1...ij · Dij+1···ij+k
(order j + k). Notice that

in the case j = k = 1, the tensor product reduces to an
outer product between vectors.

Generalized Inner Product (Kossaifi et al., 2020).
For two tensor X,Y ∈ RI1×I2×···×IN of the same
size, their inner product is defined as ⟨X,Y⟩ =∑I1

i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 Xi1,i2,...,iN Yi1,i2,...,iN . For two

tensors X ∈ RI1×I2×···×IN×Ix and Y ∈ RI1×I2×···IN×Iy

sharing N modes of the same size, the “generalized inner
product” is calculated as

⟨X,Y⟩N =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

Xi1,i2,...,iN Yi1,i2,...,iN

with ⟨X,Y⟩N ∈ RIx×Iy .

4. Language Modeling Using Tensor Trains
We introduce a language model in tensor space in Sec. 4.1,
and define our Tensor Train Language Model in Sec. 4.2.

4.1. Language Models in a Tensor Space

Natural language typically has complex dependencies be-
tween features (e.g., tokens or words) (Hou et al., 2013)3

that are not captured well by standard methods such as
feature concatenation. One could also see a similar in-
teraction between any arbitrary features in factorization
machines (Rendle, 2010). Given text consists of N words

2Most of the notations here follow the textbook Deep Learning
(Goodfellow et al., 2016).

3Such dependencies (including collocation) have been viewed
as an analogy of entanglement (Hou et al., 2013).
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Figure 1. A quick introduction to tensor diagram notation. There are two rules of tensor diagrams: (1) tensors are notated by solid shapes
with a number of ’legs’ corresponding to their indices; (2) connecting two index lines implies a contraction or summation over the
connected indices. In this paper, we augment our equations with these diagrams to make them easier to understand.

X = [x(1), x(2), · · · , x(N)] and a feature extractor fi ∈ RIi

(it can be one-hot encoding or word embedding), we now
define a representation of X designed to capture these de-
pendencies:

Φ(X) = f1(x
(1))⊗ f2(x

(2)) · · · ⊗ fN (x(N))

=

N⊗
i=1

fi(x
(i))

(1)

where the tensor space is RI1 ⊗ RI2 ⊗ · · · ⊗ RIN . Each
component of fi represents independent meaning-bearing
units, such as morphemes or latent factors. For simplicity,
we assume that a text shares the same one-hot encoding
f(x(t)) ∈ R|V | in later sections. Consequently, Φ(X) is a
|V |N -dimensional tensor that records all possible combina-
tions of words in X .

Inspired by (Zhang et al., 2019; Kossaifi et al., 2020), we
define a tensor regression model to compute the probability
for each text X:

p(X) = ⟨A,Φ(X)⟩

=

|V |∑
i1,i2,··· ,iN=1

Ai1,··· ,iN · Φ(X)i1,··· ,iN (2)

where ⟨·⟩ denotes the inner product of two same-sized
tensors, and A is a regression weight tensor of the same
shape as Φ(X) in the tensor space V⊗N = V⊗ · · · ⊗ V︸ ︷︷ ︸

N

where V refers to R|V |. Similar functions were considered
in (Novikov et al., 2016; Stoudenmire & Schwab, 2016;
Khrulkov et al., 2018; Zhang et al., 2019).

4.2. Tensor Train Language Model

4.2.1. TENSOR-TRAIN DECOMPOSITION

Suppose the sequence of indices of words in the text X
is w1, w2, · · · , wN , where wi ∈ {1, 2, · · · , |V |} and its

corresponding weight in A is denoted as Aw1w2···wN
. We

use TT decomposition to represent Aw1w2···wN
in the TT

format (Oseledets, 2011) as follows:

Aw1w2...wN
= G(1)

:,w1︸ ︷︷ ︸
1×R1

G(2)
:,w2,:︸ ︷︷ ︸

R1×R2

· · · G(N)
:,wN︸ ︷︷ ︸

RN−1×1

(3)

=
∑

α1,··· ,αN−1

G(1)
w1α1

G(2)
α1w2α2

· · ·G(N)
αN−1wN

where the tensors G(t) ∈ RRt−1×|V |×Rt (t = 1, ..., d,R0 =
RN = 1 by definition) are called TT cores, and Rk for
k = 1, · · · , N are called TT ranks.

Despite its site-dependent TT cores G(t) potentially giving
it more expressiveness for language modeling, this property
currently generates unnecessary obstacles to its applica-
bility, like the choice of Rt. Here we follow the conven-
tion of considering a special class of TT decompositions
(Khrulkov et al., 2018; Miller et al., 2021), i.e. suppos-
ing all the intermediate TT cores are equal to each other
G = G(2), . . . ,G(N−1) ∈ RR×|V |×R and G(1) = G(N) ∈
R|V |×R in Eq. 3.

4.2.2. DEFINITION OF TTLM

We define Tensor Train Language Model (TTLM) as:

p(X) =

|V |∑
i1,··· ,iN=1

R∑
α1,··· ,αN−1=1

f(x(1))i1G(1)
i1α1

· · ·

f(x(N))iN G(N)
αN−1iN

(4)

where each f(x(t)) is a one-hot vector having wt = 1 for
at most one t, and has zeros elsewhere. The tensor diagram
notation of TTLM is shown in Fig. 2a. Note that Eq. 4 can
compute the elements of A in the low-dimensional space



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2023

|𝑉|

𝑅
𝐆(")

𝒇 𝑥 "

…

Φ 𝑋

𝒜

|𝑉|

𝐆
𝑅

𝐺

𝑅

|𝑉|

𝐆($)

𝒇 𝑥 % 𝒇 𝑥 &

a) TTLM

𝑅

𝐖'(

|𝑉|

𝑅

𝐖'(

𝐖()

|𝑉|

𝑅

𝑅 𝑅

c) TTLM-Largeb) TTLM-Tiny
𝐆 𝐆

𝑅 𝑅
𝛅𝑊)) 𝑊))𝑅

𝛅
𝑅

𝑅

𝑅

𝑅

Figure 2. a) Tensor Train Language Model based on Eq. 4. b) TT core of TTLM-Tiny. c) TT core of TTLM-Large. The dashed line in the
square represents A,Φ(X), or G. Note that the only difference between TTLM-Large and TTLM-Tiny is whether to use tensor Weh.

as Eq. 3 does. This can be observed if we represent the
elements of G(t)

:,wt,: in Eq. 3 as:

G(t)
αt−1wtαt

=

|V |∑
i=1

f(x(t))iG
(t)
αt−1iαt

(5)

Since Aw1w2...wN
here equals to p(X), we can derive Eq. 4

by inserting Eq. 5 into Eq. 3.

The critical difference between TTLM defined by Eq. 4 and
Eq. 3 is that TTLM has combined the weights A and the
input data Φ(X) together, indicating its potential to be used
for language modeling tasks.

4.2.3. RECURSIVE PROBABILITY COMPUTATION.

We recursively unfold the calculation of TTLM in Eq. 4 and
find that G has two sources of “input”: the information from
the previous recursive unfolding, and the input data f(x(t))
(see Eq. 13 for a detailed version). From this perspective, G
acts as a bilinear map G : R|V | × RR → RR, and we can
regard the information in the previous step as a hidden state
h
(t)
TTLM, given by:

h
(t)
TTLM = f(x(t))T Gh

(t−1)
TTLM (6)

where f(x(t)), G, and h
(t−1)
TTLM are contracted together (we

permute the indices of G from RR×|V |×R to R|V |×R×R

which does not change the number of indices).

Utilizing this recursive property, we here provide further
details about computing p(X) by TTLM in practice. In
language modeling, p(X) is often decomposed using the
chain rule (Bahl et al., 1983) as follows:

p(X) =

N∏
t=1

p(x(t)|x(1:t−1))
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Figure 3. Recursive calculation of conditional probability in
TTLM. Here we provide an example that given the text x(1:3),
y(4) = ψ(G(4)h

(3)
TTLM) where y(4) is the probability distribution

of word x(4).

where x(1:t−1) denotes the text [x(1), x(2), · · · , x(t−1)]. At
time t, the output prediction of a model, y(t) ∈ V, is a
probability distribution of word x(t) given x(1:t−1).

In TTLM, we define y(t) as follows:

y(t) = ψ
(

G(t)h
(t−1)
TTLM

)
(7)

where G(t) ∈ R|V |×R is the last TT core in TT format
at time t. ψ is any function that ensures that y(t) is non-
negative and that the conditional probabilities sum to 1. For
the use of TTLM as a component in a larger architecture,
ψ can be chosen as a constant scaling function to preserve
linearity; for stand-alone use of TTLMs, ψ can be chosen to
be any appropriate activation function—in the remainder of
the paper, we shall use the softmax function (Bridle, 1990).
Fig. 3 provides an example of a recursive calculation of
conditional probability.

We can derive the definition of y(t) in high-dimensional
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space, if we substitute h
(t−1)
TTLM in Eq. 7 by Eq. 4 and Eq. 6:

y(t) = ψ

 ∑
i1,··· ,it−1

∑
α1,··· ,αt−1

f(x(1))i1G(1)
i1α1

· · ·G(t)
αt−1


(8)

= ψ
(
⟨A(1:t)),Φ(X(1:t−1))⟩t−1

)
(9)

where A(1:t) ∈ V⊗t, Φ(X(1:t−1)) =
t−1⊗
i=1

f(x(i)) ∈ V⊗t−1

and ⟨·⟩t−1 denotes the ”generalized inner product” defined
in Sec. 3. Note that Eq. 8 is the low-dimensional form of
Eq. 9, similarly to the relationship between Eq. 4 and Eq. 2.

By these definitions, there are some interesting properties
of TTLM. (1) We can use teacher forcing (Marcus, 1998)
to learn parameters of TT cores. (2) The hidden-to-output
tensor G(t) is defined to be the same as the input-to-hidden
tensor G(1). (3) G and G(t) have no parameters in com-
mon. We provide a detailed explanation of the relationship
between different TT cores in Appendix A.

5. TTLM Variants
To show the versatility and practical applicability of the
TTLM framework, we now propose two new variants:
TTLM-Large and TTLM-Tiny in Sec. 5.1. We briefly sum-
marize the relationship between TTLM and some widely-
used RNNs in Sec. 5.2.

5.1. New Variants: TTLM-Large and TTLM-Tiny

The TT core G in TTLM is an entire third-order tensor. In
the two variants, we decompose G into several separate
tensors without violating the TT format, as shown in Fig.
2b and Fig. 2c. We define TTLM-Tiny and TTLM-Large as
follows:

h
(t)
Tiny = f(x(t))T WxeδW hhh

(t−1)
Tiny

h
(t)
Large = f(x(t))T WxeWehδW hhh

(t−1)
Large

(10)

where W hh ∈ RR×R is the hidden-to-hidden matrix;
Wxe ∈ R|V |×R×R is the input-to-hidden tensor; Weh ∈
RR×R×R×R; and δ ∈ RR×R×R×R is a fourth-order diag-
onal tensor such that δijkl = 1 iff the i = j = k = l, and
δijkl = 0 otherwise.

The relationship between our proposed models and TTLM
is as follows: Wxe in both models take the same role as G(t)

in TTLM (i.e. input-to-hidden and hidden-to-output), while
G = WxeδW hh in TTLM-Tiny and G = WxeWehδW hh

in TTLM-Large.

As in RNNs, we compute the conditional probability recur-
sively for TTLM-Large and TTLM-Tiny as:

y(t) = ψ(VPh(t)) (11)

where V ∈ RR×|V |×R is an output embedding tensor,
P ∈ RR×R×R is a projector tensor. Then we tie the input
tensor Wxe to the output embedding tensor V (we provide a
detailed explanation in Sec. 6.2).

One obvious advantage of our models is to utilize informa-
tion from the hidden layer and input data separately. Such
interaction, particularly TTLM-Tiny, can potentially avoid
overfitting, similarly to (Wu et al., 2016) where multiplica-
tion integration between two sources of ”input” can outper-
form many other methods. In Sec 6.3, we provide relevant
experimental evidence.

5.2. Existing TTLM Variants

Given the fact that TT scores of TTLM can vary, Appendix
B provides a detailed illustration that three existing models,
namely Second-order RNNs, Recurrent Arithmetic Circuits
(RACs), and Multiplicative Integration RNNs (MI-RNNs)
can be considered as one of the ”special” implementations
of TTLM.

We briefly summarize the differences between the three
models: 1) Second-order RNNs use the third-order T as the
TT cores with an activation function given Eq. 12; 2) RACs
use W hx ⊙ W hh as the TT cores given Eq. 16; 3) MI-
RNNs use W hx ⊙W hh as the TT cores with an activation
function given Eq. 17.

Along with our two proposed models, we study the exper-
imental performance of second-order RNNs, RACs and
MI-RNNs compared to TTLM-Large and TTLM-Tiny in
Sec. 6.

6. Experimental Evaluation
To further understand the properties of TTLM variants, we
now investigate the effectiveness of TTLM, TTLM-Large
and TTLM-Tiny compared to Second-order RNNs, RACs,
MI-RNNs, and Vanilla-RNNs.

We specify our experimental setting in Sec. 6.1 and imple-
mentation details in Sec. 6.2. We study the influence of
ranks on the performance of TTLM variants in Sec 6.3 and
examine the impact of nonlinear activation functions on the
effectiveness of TTLM variants in Sec.6.4.

6.1. Experimental Setting

Task, Datasets, and Metric. We conduct experiments on
two word-level language model datasets: (1) English Penn
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Model WikiText-2 PTB Hidden Layer Embed
Param PPL Param PPL (Rank) Size

Transformer (Vaswani et al., 2017) 90.5M 293.0 32.8M 208.7 20 1 400
Vanilla-RNNs (Mikolov & Zweig, 2012) 11.6M 96.6 4.0M 115.3 20 1 400
Second-order RNNs (Hochreiter & Schmidhuber, 1997) 11.8M 96.0 4.2M 108.2 20 1 400
RACs (Levine et al., 2018) 11.6M 97.6 4.0M 116.8 20 1 400
MI-RNNs (Wu et al., 2016) 11.6M 99.6 4.0M 119.1 20 1 400
TTLM 12.2M 546.4 4.2M 559.8 20 1 400
TTLM-Tiny 11.6M 94.9 4.0M 106.8 20 1 400
TTLM-Large 11.8M 82.3 4.2M 99.3 20 1 400

Table 1. Test set PPL on the WikiText-2 and PTB datasets. The symbol ”−” means these data are not available in their original paper. The
“Param” column denotes the number of parameters; see Sec. 6.2 for a detailed description. The ”Hidden (Rank)” column denotes the
number of hidden units or ranks. The ”Embed Size” column denotes the size of each embedding vector. We report the lowest test set PPL
of the Transformer whose number of heads is selected from [2, 4, 5, 8].

Treebank (PTB) (Marcinkiewicz, 1994), which consists of
929k training tokens, 73k validation tokens, and 82k test to-
kens. Its vocabulary size is 10k. (2) The WikiText-2 dataset
(Merity et al., 2016) is derived from Wikipedia articles and
consists of 2088k training tokens, 217k validation tokens,
45k test tokens, and a vocabulary of over 30k types. We
compare these models on the language modeling task, eval-
uated by the Perplexity (PPL) (Meister & Cotterell, 2021);
the lower the PPL, the better the model.

Baselines. Our models are compared with the following
baselines: Transformer (Vaswani et al., 2017) , Vanilla-
RNNs (Mikolov & Zweig, 2012), Second-order RNNs
(Hochreiter & Schmidhuber, 1997), Recurrent Arithmetic
Circuits (RACs) (Levine et al., 2018), and Multiplicative
Integration RNNs (MI-RNNs) (Wu et al., 2016). The imple-
mentation details are provided in Sec. 6.2.

Hyperparameters. (1) To compare the effectiveness
of comparable models on the same scale, we set the
rank/hidden units of TTLM variants/Vanilla-RNNs as [5,
10, 20, 25, 30, 35, 40, 45, 50]. The embedding size of these
models is the squared number of hidden units/ranks. This
setup is because of the architectures of TTLM-Large and
TTLM-Tiny as introduced in Sec. 5.1. (2) To avoid the
potential impact of the embedding size on Vanilla-RNNs’
performance, we provide several common choices of em-
bedding size in the model by setting its embedding size as
[100, 200, 300]. We name them as RNNs-100, RNNs-200,
and RNNs-300 correspondingly and display them in Fig. 4.
(3) We train all models for 50 epochs and choose the best
model in the validation set to predict the result in the test
set. (4) The weights in the models are adjusted to minimize
the average cross entropy loss over training sequences via
stochastic gradient descent computed using the truncated
backpropagation through time algorithm (Werbos, 1990;
Williams & Peng, 1990). The random seed is fixed to ensure
the experimental results are not influenced by initializing
the weights.

6.2. Implementations

Model Training Parameters

Vanilla-RNN W xe ∈ RE×|V |, W eh ∈ RE×H ,
W hh ∈ RH×H , P ∈ RH×E ,
V ∈ RE×|V |

MI-RNNs W xe ∈ RE×|V |, W eh ∈ RE×H ,
W hh ∈ RH×H , P ∈ RH×E ,
V ∈ RE×|V |

RACs W xe ∈ RE×|V |, W eh ∈ RE×H ,
W hh ∈ RH×H , P ∈ RH×E ,
V ∈ RE×|V |

Second-order RNNs W xe ∈ RE×|V |, T ∈ RH×H×H ,
W hh ∈ RE×H , P ∈ RH×E ,
V ∈ RE×|V |

TTLM G ∈ RR×|V |×R, G(t) ∈ RR×|V |,
G(1) ∈ RR×|V |

TTLM-Tiny Wxe ∈ RR×|V |×R, W hh ∈ RR×R,
P ∈ RR×R×R, V ∈ RR×R×|V |

TTLM-Large Wxe ∈ RR×|V |×R,
Weh ∈ RR×R×R×R,
W hh ∈ RR×R, P ∈ RR×R×R,
V ∈ RR×R×|V |

Table 2. Training parameters in our implementation. E is the em-
bedding size, H is the hidden units in RNNs, and R is the rank in
the TTLM. We setH = R and E = R2 to make the parameters of
all models in the same scale. The parameters of W xe and Wxeare
uniformly initialized in the interval [−0.1, 0.1], W eh, Weh and
W hh are uniformly initialized between [− 1√

H
, 1√

H
].

We implement all models using PyTorch on GPU A100 with
one single card.

We use the PyTorch version of the standard Transformer
(Vaswani et al., 2017).4 For RNNs, there are five matrix
parameters: W xe ∈ RE×|V | is the input embedding matrix,

4The code is available at https://pytorch.org/
tutorials/beginner/transformer_tutorial.
html.

https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
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Figure 4. Test set PPL on the PTB dataset w.r.t. ranks/hidden units.
RNNs here denotes Vanilla-RNNs, which has the same embedding
size as TTLM-Large and TTLM-Tiny. RNNs-100, RNNs-200, and
RNNs-300 are the Vanilla-RNNs with fixed embedding sizes of
100, 200, and 300, respectively.

W eh ∈ RE×H is the embedding-to-hidden matrix, W hh ∈
RH×H is the hidden-to-hidden matrix. We tie (share the
same training parameters) the input embedding W xe and
output embedding V , which has been proved to lead to a
significant reduction in perplexity (Press & Wolf, 2016). So
there is a projection matrix P ∈ RH×E before the output
embedding. All this process is introduced in (Press & Wolf,
2016).

For TTLM models, we tie the input tensor Wxe and V. The
implementation of δ is functioned by a reshape function, so
the interaction between hidden and input can be computed
by matrix product. We also let G(1) have the same parame-
ters along the dimension |V | (i.e., G(1) is simplified into a
G(1) ∈ R1×R and thus it can be viewed as the initial hidden
state).

6.3. Rank and Effectiveness Analysis

The rank of the TT format has been used to explain the
expressive power or long-term memory capacity of RNNs
(Khrulkov et al., 2018; Levine et al., 2018). The rank of TT
decomposition has been proved to be the dimension of the
hidden states of RNNs (Khrulkov et al., 2018), which reflect
on the capacity of the RNNs. The higher rank can have more
capacity and vice versa. However, the relationship between
rank and effectiveness in language modeling has yet to be
shown practically. We will evaluate the effectiveness of
TTLM-Large and TTLM-Tiny w.r.t ranks.

6.3.1. EFFECTIVENESS

Table 1 presents the results of the test set PPL for our models
and the baselines on the WikiText-2 and PTB datasets. As
shown, compared to Vanilla-RNNs, TTLM-Large reduces
PPL by 14.3 and 16.0, respectively, and TTLM-Tiny reduces

Figure 5. Validation set PPL of TTLM-Large and TTLM-Tiny with
increasing ranks on the PTB dataset. Top: TTLM-Large, Bottom:
TTLM-Tiny.

PPL by 1.7 and 8.5, respectively. Thus, when the number
of hidden units or ranks is set to 20 and the embedding size
is 400, both TTLM-Large and TTLM-Tiny perform better
than all the baselines.

To further evaluate the effectiveness of our models, we
conduct a comparison between TTLM-Large, TTLM-Tiny,
and Vanilla-RNNs using increasing ranks, as depicted in Fig.
4. It’s worth noting that we also include RNNs-100, RNNs-
200, and RNNs-300 to control for the potential impact of
large embedding size. As shown, even when the number of
hidden units reaches 40, the test set PPL of RNNs decreases
steadily, while TTLM-Large and TTLM-Tiny do not. Thus,
we expect our models to outperform Vanilla-RNNs with a
low-scale of hidden units (i.e., the number ranges from 5 to
40), but not larger scales.

6.3.2. OVERFITTING

Fig. 5 illustrates the performance of TTLM-Large and
TTLM-Tiny on the validation set as the number of ranks
increases. As shown, the validation set PPL of TTLM-Large
starts to rise in earlier training epochs when we gradually
enlarge its ranks. In contrast, the validation PPL of TTLM-
Tiny stably decreases as the number of ranks increases. The
comparison indicates that TTLM-Large is more prone to
overfitting than TTLM-Tiny. This finding is further sup-
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Figure 6. The influence of nonlinearity on TTLM variants on the PTB dataset. The suffix -tanh refers to a model using the tanh
activation function, indicated by dashed lines. Second-linear refers to Second-order RNNs without activation functions. Setting: all
models have 17 hidden units/ranks.

ported by the results in Fig. 4. The test set PPL of TTLM-
Tiny consistently improves as the rank increases, while
TTLM-Large’s performance declines when the number of
ranks reaches 25.

When we focus on the difference between the two models,
TTLM-Large has an additional parameter tensor Weh. Thus,
we believe that the simpler parameterization of the TT cores,
the more easily the model avoids overfitting. This finding
is consistent with the comparison between MI-RNNs and
Second-order RNNs by (Wu et al., 2016). When it comes
to practical situations, we need to be aware that TTLM-
Tiny has a lower capacity to fit the training data and, as a
result, poses a lower risk of overfitting when compared to
TTLM-Large.

6.4. Nonlinearity Analysis

Previous studies have attempted to use TT decomposition as
a theoretical platform to investigate RNNs (Khrulkov et al.,
2018; Levine et al., 2018). However, one key difference
between TT decomposition and the existing neural networks
(like Vanilla-RNNs) is the nonlinearity activation functions
inside the network models. The lack of nonlinearity in
the tensor decomposition calls into question whether its
theoretical analysis is transferable to models based on RNNs.
To understand whether the effect of the tanh activation
function on the TT variants varies with the TT cores, we
provide an empirical result as displayed in Fig. 6.

Regarding convergence speed, tanh speeds up TTLM-
Large-tanh, TTLM-Tiny-tanh, and MI-RNNs while barely
influencing second-order RNNs. Regarding the magnitude
of the lowest validation perplexity, tanh impairs the perfor-
mance TTLM-Large and TTLM-Tiny but has little influence
on multiplicative integration and the third-order tensor T in
Second-order RNNs.

Thus, the influence of nonlinear activation functions on

TTLM variants depends on TT cores settings, both for the
convergence of validation PPL and the magnitude of the
lowest validation PPL. From an experimental point of view,
we believe that the effect of nonlinearity functions on one
TT variant cannot simply be transferred or analogized to
another TT variant. This also suggests that one should
be wary of the analogy between tensor decomposition and
existing neural network models at the implementation level
declared by previous research (Khrulkov et al., 2018; Levine
et al., 2018). The nonlinear activation functions could be a
factor influencing such an analogy.

7. Conclusion
Tensor networks having been proposed as promising lan-
guage models, we first apply TT decomposition to real-
world language modeling datasets and name the framework
TTLM. We propose two variants: TTLM-Large and TTLM-
Tiny, and show that they outperform Vanilla-RNNs with
low-scale hidden units. The presentation of the experimental
results is an advancement for exploring tensor networks in
machine learning. Meanwhile, we demonstrate that Second-
order RNNs, RACs, and MI-RNNs are special implementa-
tions of TTLM.

A limitation of this study is that it shall examine the in-
fluence of different normalization functions. In future re-
search, if appropriate mathematical tools and benchmarks
are available, we plan to investigate the long-range corre-
lation modeling capability of TTLM in natural language,
which is believed to be one of the core features in TTLM.
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A. Relationship between TT Cores in TTLM
To help readers understand the roles of TT cores in TTLM, we here provide a detailed calculation of the probability of a text
X = [x(1), x(2), · · · , x(N)] by TTLM. Note that all the intermediate TT cores are equal to each other: G = G(2), ...,G(N−1)

and G(1) = G(N).

The calculation of y(t) (i.e. the conditional probability of x(t) given x(1:t−1)) at time t) can be described as three steps. As
step I, suppose f(x(1)) is a one-hot vector having f(x(1))1 = 1. The calculation of G(1)f(x(1) in TTLM is as follows:

G(1)f(x(1) =


f
(
x(1)

)
1

f
(
x(1)

)
2

. . .
f
(
x(1)

)
|V |




G(1)
11 G(1)

12 . . . G(1)
1R

G(1)
21 G(1)

22 . . . G(1)
2R

. . . . . . . . . . . .

G(1)
|V |1 G(1)

|V |2 . . . G(1)
|V |R


=

[
G(1)

11 ,G
(1)
12 , · · · ,G

(1)
1R

]T
= h

(1)
TTLM

As step II, TTLM will calculate f(x(i))Gh
(i−1)
TTLM where i ∈ {2, 3, · · · , t− 1}. For example, h(2)

TTLM is calculated in Eq. 6 at
time t = 2 as follows:

h
(2)
TTLM = f(x(2))T Gh

(1)
TTLM

As step III, TTLM will output y(t) as follows:

G(t)h
(t−1)
TTLM =


G(t)

11 G(t)
12 . . . G(t)

1R

G(t)
21 G(t)

22 . . . G(t)
2R

. . . . . . . . . . . .

G(t)
|V |1 G(t)

|V |2 . . . G(t)
|V |R



h
(t−1)
TTLM1

h
(t−1)
TTLM2

. . .

h
(t−1)
TTLMR



=


∑R

i=1 G(t)
1i h

(t−1)
TTLM1∑R

i=1 G(t)
2i h

(t−1)
TTLM2

. . .∑R
i=1 G(t)

Rih
(t−1)
TTLMR


Observing the calculation, G(1), G and G(t) theoretically have no parameters in common (though we set G(1) = G(t) for
simplicity). Further, their roles in TTLM are different: G(1) can be viewed as a word embedding matrix; G deals with two
sources of information, i.e. hidden state and input word; G(t) extracts the evidence provided in h

(t−1)
TTLM and generates a set of

scores over vocabulary.

B. Relationship between TTLM and some RNNs
We now demonstrate the relationship between TTLM and Second-order RNNs, Recurrent Arithmetic Circuits (RACs) and
Multiplicative Integration RNNs (MI-RNNs).

To avoid symbol clutter when representing different RNNs, the notation is: W hx ∈ RR×|V | denotes the input-to-hidden
matrix, W hh ∈ RR×R denotes hidden-to-hidden matrix, ϕ(·) is an element-wise nonlinear activation function. Also,
different hidden states are denoted as: Second-order RNNs (h(t)

2nd), RACs (h(t)
RAC) and MI-RNNs (h(t)

MI ).

B.1. Relation to Second-order RNNs

Unlike Vanilla-RNNs (Mikolov & Zweig, 2012) that have additive blocks, Second-order RNNs have interaction between
hidden states and input data in multiplicative form. This is achieved by a third-order tensor T with the i-th coordinate of the
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hidden states h(t)
2nd defined as (Hochreiter & Schmidhuber, 1997; Maupomé & Meurs, 2020):

h
(t)

2ndi
= ϕ(f(x(t))T Ti,:,:h

(t−1)
2nd + b) (12)

where Ti,:,: ∈ RM×R is the ith slice of tensor T ∈ RM×R×R, and b is a bias vector. For simplicity, we will ignore b for
other variants of RNNs since b can be seen as 0th component of f(x(t)) which equals to 1. (Rabusseau et al., 2019) has
provided that Tensor Trains can generalize linear Second-order RNNs. We here provide a basic proof from the perspective
of recursive property in TTLM.
Claim B.1. The third-order tensor T in Second-order RNNs equals the TT cores in TTLM. There is a nonlinear activation ϕ
such that the hidden states of Second-order RNNs is identical to that of TTLM when they are accompanied by ϕ.

Proof. The proof is based on the following observation: We recursively unfold the calculation of TTLM in Eq. 4:

p(X) =

|V |∑
i=1

f(x(1))i1G(1)
i1α1

· · ·

=

|V |∑
i1,i2=1

R∑
α1=1

f(x(1))i1G(1)
i1α1

f(x(2))i2Gα1i2α2 · · ·

...

=

|V |∑
i1,··· ,iN=1

R∑
α1,··· ,αN−1=1

f(x(1))i1G(1)
i1α1

f(x(2))i2Gα1i2α2 · · · f(x
(N))iN G(N)

αN−1iN

(13)

Observe in the above, that at each time step, G has two sources of “input”: the information from the previous recursive
unfolding (e.g., in the second line, the first line is the previous information), and the input data f(x(t)). From this perspective,
G acts as a bilinear map G : R|V | × RR → RR, and we can regard the information in the previous line as a hidden state
h
(t)
TTLM, given by:

h
(t)
TTLMαt

=

|V |∑
it=1

R∑
αt=1

f(x(t))itGitαtαt−1h
(t−1)
TTLMαt−1

(14)

where we permute the indices of Gαt−1itαt
as Gitαtαt−1

( note that this does not change the number of indices).

We can also represent the hidden states in Second-order RNNs shown by Eq. 12 in element-wise fashion:

h
(t)
2ndi

= ϕ(f(x(t))T Ti,:,:h
(t−1)
2nd )

= ϕ

 |V |∑
j=1

R∑
k=1

f(x(t))jTjikh
(t−1)
2ndk

 (15)

where j, k are the dummy indices as it, αt; i specifies the coordinate of h(t)
2nd just like αt for h(t)

TTLM. Thus, T and G are the
same-sized trainable bi-linear map.

After demonstrating that the third-order tensor T in Second-order RNNs equals the TT cores G, the only difference between
the hidden states in Eq. 15 and in Eq. 14 is ϕ. If we add ϕ for h(t)

TTLM, the hidden states of Second-order RNNs and TTLM
are identical, as shown in Fig. 7a.

B.2. Relation to RACs and MI-RNNs

We here focus on Multiplicative Integration (MI), a way to connect two sources of inputs by the Hadamard product ‘⊙’. MI
has been used in RACs, Multiplicative RNNs (M-RNNs) (Sutskever et al., 2011) and MI-RNNs:
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Figure 7. a) Second-order RNNs under TTLM framework. b) Hidden state of RACs under TTLM framework. c) hidden state of MI-RNNs
under TTLM framework. The dashed line in the square denotes A,Φ(X) or G. The small hollow circles denote the activation functions.

Recurrent Arithmetic Circuits (RACs) are recurrent networks with hidden states h(t)
RAC defined as (Levine et al., 2018):

h
(t)

RAC = W hxf(x(t))⊙W hhh
(t−1)

RAC (16)

where these hidden states are also used as an intermediate term in M-RNNs.

Multiplicative Integration RNNs (MI-RNNs) are RACs with an activation function and hidden states h(t)
MI defined as (Wu

et al., 2016):

h
(t)

MI = ϕ(W hxf(x(t))⊙W hhh
(t−1)

MI ) (17)

Claim B.2. Given the condition the TT-scores: G = W hx ⊙ W hh. The hidden states of RACs are identical to that of
TTLM. There is a nonlinear function ϕ such that the hidden states of MI-RNNs are identical to that of TTLM if they are
accompanied by ϕ.

Proof. The proof is based on the following observation: In the language of tensor contractions, Eq. 16 involves contracting
the input weights matrix W hx with the input vector f(x(t)), and contracting the hidden weights matrix W hh with h

(t−1)
RAC .

The Hadamard product of the two is a third-order diagonal tensor δ ∈ RR×R×R such that δijk = 1 iff the i = j = k, and
δijk = 0 otherwise. Thus, we can write Eq. 16 in element-wise fashion:

h
(t)
RACαt

=

|V |∑
it=1

R∑
αt=1

f(x(t))itW
hx
itj δjαtkW

hh
kαt−1

h
(t−1)
RACαt−1

=

|V |∑
it=1

R∑
αt=1

f(x(t))itGitαtαt−1h
(t−1)
RACαt−1

(18)

where G = W hx ⊙W hh. In this case, the hidden state of TTLM in Eq. 14 is equal to the hidden state of RACs in Eq. 18,
as shown in Fig. 7b. Similarly, if Eq. 14 is accompanied with an activation function ϕ, Eq. 14 is equal to the hidden state of
MI-RNNs in Eq. 17 as shown in Fig. 7c.

Given Claim B.1 and B.2, the three models shall be simulated by TTLM with a nonlinear activation function and we leave
finding a theoretical proof of this conjecture to a future work.

C. Comparison with related work on experiment datasets
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Dataset Data type Vocab N Real-world language

Tomita grammars (Tomita, 1982) Disc. 2 10k ×
Motzkin grammar (Alexander et al., 2021) Disc. 3 10k ×
Email addresses (Radev, 2008) Disc. ≤ 256 4k ×
POWER (Dua & Graff, 2017) Cont. - 1659k ×
GAS (Fonollosa et al., 2015) Cont. - 852k ×
HEPMASS (Baldi et al., 2016) Cont. - 315k ×
MINIBOONE (Roe et al., 2005) Cont. - 29k ×
BSDS300 (Martin et al., 2001) Cont. - 1000k ×
PTB (Marcinkiewicz, 1994) Disc. 10k 31k

√

WikiText-2 (Merity et al., 2016) Disc. 30k 73k
√

Table 3. The column ”datasets” means the training datasets. The first three are used in (Miller et al., 2021), the following five are used in
(Novikov et al., 2021), and the last two are used in our paper. The column ”N” denotes the number of training examples. The column
”Vocab” denotes the number of types. The value ”Cont.” denotes continuous variable, while the ”Disc.” denotes discrete variables.


